首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This communication introduces a new spectrophotometric assay for the detection of peroxide generated by Photosystem II (PS II) under steady state illumination in the presence of an electron acceptor. The assay is based on the formation of an indamine dye in a horseradish peroxidase coupled reaction between 3-(dimethylamino)benzoic acid and 3-methyl-2-benzothiazolinone hydrazone. Using this assay, we found that as the O2 evolution activity of PS II-enriched membrane fragments is decreased by treatments which cause the dissociation of the 33 and/or 23 and 16 kDa extrinsic proteins (i.e., CaCl2-washing, NaCl-washing, lauroylcholine-treatment and ethylene glycol-treatment), light-induced peroxide formation increases. Both the losses of O2 evolution and increases in peroxide formation seen under these conditions are reversed by CaCl2 addition, indicating that the two activities originate from the water-splitting site. However, the increased rates of peroxide formation do not quantitatively match the losses in O2 evolution activity. We suggest that a rapid consumption of the peroxide takes place via a catalase/peroxidase activity at the water-splitting site which competes with both the O2 evolution and peroxide formation reactions. The observed peroxide formation is interpreted as arising from enhanced water accessibility to the catalytic site upon perturbation of the extrinsic proteins which then leads to alternate water oxidation side reactions.Abbreviations Chl chlorophyll - DCBQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4-dichloro)-1,1-dimethylurea - DCPIP 1,6-dichlorophenolindophenol - DMAB 3-(dimethylamino)benzoic acid - DMBQ 2,6-dimethyl-p-benzoquinone - DPC diphenylcarbazide - HEPES 4-(2-hydroxyethyl)-1-piperazinesulfonic acid - HMD HRP, MBTH, DMAB - HRP horseradish peroxidase - LCC lauroylcholine chloride - MBTH 3-methyl-2-benzothiazolinone hydrazone - MES 4-morpholinoethanesulfonic acid  相似文献   

2.
Pyranose oxidase (glucose 2-oxidase) and pyranosone dehydratase were purified 27.6- and 43.9-fold respectively from mycelial extracts of the fungus Phanerochaete chrysosporium using hydrophobic interaction, anion exchange and gel filtration chromatography. The enzymes appeared substantially homogeneous on SDS-PAGE and were comprised of identical subuntis with apparent Mr values of 69 000 and 99 000 for pyranose oxidase and pyranosone dehydratase, respectively. The apparent Mr's of the native enzymes, based on equilibrium ultracentrifugation, were 308 000 and 221 000. In coupled reactions, the enzymes catalyzed conversion of d-glucose via d-glucosone (d-arabino-2-hexosulose) to the antibiotic -pyrone, cortalcerone. The latter compound was isolated as a diphenylhydrazone derivative and spectroscopically identified.Abbreviations DMAB 3-dimethylaminobenzoic acid - FPLC fast protein liquid chromatography - MBTH 3-methyl-2-benzothiazolinone hydrazone hydrochloride - PD pyranosone dehydratase - PMSF phenylmethylsulfonyl fluoride - POD pyranose oxidase  相似文献   

3.
The reaction between o-, m-, and p-methoxyphenols and 3-methyl-2-benzothiazolinone hydrazone (MBTH) is studied in the presence of horseradish peroxidase (HRP) and H2O2 as oxidative agent. The findings indicate that enzyme (H2O2 oxidoreductase; EC 1.11.1.7) catalyzes an oxidative coupling reaction between MBTH and phenols which produces azo dye compounds. On the basis of kinetic parameters and optimum pH values, a mechanism in which both MBTH and phenols seem to be activated by the HRP for achieving the oxidative coupling is proposed. Furthermore, in the current study, we have evaluated the possibility that these azo dyes may be useful in the measurement of peroxidase activity. The method is based on the observed increase in the absorbance at 502 nm (8,355 cm−1 −1 of extinction molar coefficient) due to the formation of a red azo dye compound resulting from the peroxidase-catalyzed oxidative coupling of MBTH and o-methoxyphenol (guaiacol). Using this assay system, HRP can be determined in picomolar levels by a fixed time method.  相似文献   

4.
Lysyl oxidase catalyzes the final known enzymatic step required for collagen and elastin cross-linking in the biosynthesis of normal mature functional insoluble extracellular matrices. In addition, lysyl oxidase has been identified as a possible tumor suppressor. Lysyl oxidase activity in biological samples is traditionally and most reliably assessed by tritium release end-point assays using radiolabeled collagen or elastin substrates involving laborious vacuum distillation of the released tritiated water. In addition, a less sensitive fluorometric method exists that employs nonpeptidyl amine lysyl oxidase substrates and measures hydrogen peroxide production with horseradish peroxidase coupled to homovanillate oxidation. The present study describes a more sensitive fluorescent assay for lysyl oxidase activity that utilizes 1,5-diaminopentane as substrate, and released hydrogen peroxide is detected using Amplex red in horseradish peroxidase-coupled reactions. This method allows the detection of 40 ng of enzyme per 2 ml assay at 37 degrees C and is 7.5 times more sensitive than the currently available fluorometric assay for enzyme activity. This method eliminates the interference that occurs in some biological samples and can be successfully used to detect lysyl oxidase activity in cell culture experiments.  相似文献   

5.
Manganese and lignin peroxidase (MnP, LiP) activities were measured in straw extracts from cultures of Phanerochaete chrysosporium. Out of six MnP substrates, the MBTH/DMAB (3-methyl-2-benzothiazolinone hydrazone/3-(dimethylamino)benzoic acid), gave the highest MnP activity. Detection of LiP activity as veratryl alcohol oxidation was inhibited by phenols in the straw culture extracts. Appropriate levels of veratryl alcohol and peroxide (4 mM and 0.4 mM, respectively), and a restricted sample volume (not larger than 10%) were necessary to detect activity.  相似文献   

6.
Development of a peroxidase-coupled fluorometric assay for lysyl oxidase   总被引:2,自引:0,他引:2  
Lysyl oxidase catalyzes the oxidation of peptidyl lysine in elastin and collagen and also acts upon nonpeptidyl amines, although the enzyme becomes slowly inactivated while processing nonpeptidyl substrates. In spite of this complexity, it has been possible to devise a continuously monitored peroxidase-coupled fluorometric assay for the oxidation of simple amines by lysyl oxidase. In the present study, optimal assay conditions have been explored and found to include assay temperatures of 50 to 60°C, the presence of urea in the assay, and the use of diaminopentane as substrate. Although the assay is subject to interference by contaminating macromolecules in enzyme fractions, a linear assay response to enzyme concentration is obtained with highly purified lysyl oxidase with a limiting sensitivity of 0.3 μg of enzyme per assay.  相似文献   

7.
The interference of 5-hydroxytryptamine with the assay of glucose by glucose oxidase:peroxidase:chromogen methods is demonstrated. Evidence is presented that this interference results from competition by 5HT and other indoles, which can act as hydrogen donors to the peroxidase: H2O2 system, with the chromogenic hydrogen donors guaiacol, o-dianisidine and ABTS 2,2′-azino-di[3-ethylbenzthiazoline-6-sulphonic acid] ammonium salt commonly used in glucose assay systems.  相似文献   

8.
《Bioorganic chemistry》1986,14(3):262-273
Cholesterol oxidase from Nocardia erythropolis, Pseudomonas, and Streptomyces species was active in microemulsion in which cholesterol is well solubilized. The activity was stable in nonionic microemulsions whereas in cationic and anionic microemulsions the activity decreased with time. The coupled activity test using horseradish peroxidase which is very stable in microemulsion, was modified. The activity at very low water concentration in nonionic microemulsions increased with the water content. The kinetic constants were determined: the Michaelis constant is in the range 10 to 28 mm in the microemulsions, compared to 10 to 28 μm in buffer. The maximum velocity was reduced by a factor of 3 to 5 compared to that in buffer. Neither substrate excess nor product inhibition was detected. The preparative oxidation of cholesterol revealed the inactivation of the cholesterol oxidase by hydrogen peroxide. In contrast to glucose oxidase, hydrogen peroxide inactivated cholesterol oxidase in the absence of substrate. Catalase provides protection during the cholesterol oxidation. Microemulsions are very good media in which to perform enzyme catalyzed reactions with substrates of low water solubility. Their use for the reproducible determination of cholesterol should be examined.  相似文献   

9.
A continuous spectrophotometric method suitable for the determination of the activities of several peroxisomal oxidases in rat tissue homogenates is described. The assay involves the continuous spectrophotometric measurement of the reaction product, H2O2, by coupling it to the reduction of a chromogen, o-dianisidine, with horseradish peroxidase. Catalase interference was overcome using azide to inhibit its activity and a H2O2 standard curve used to quantitate oxidase activity in terms of microkatals per milliliter of enzyme.  相似文献   

10.
Ca2+ plays a critical role as second messenger in the signal–response coupling of plant defence responses, and methyl-jasmonate and methyl-salicylate are important components of signal transduction cascades activating plant defences. When intact axenic non-induced seedling roots of sunflower were treated with different Ca2+ concentrations up to 1 mM, there was no significant increase in O 2 .? generation or DMAB–MBTH peroxidase (extracellular, ECPOX) activities in the apoplast, probably because these roots had enough Ca2+ in their exo- and endocellular reservoirs. Both activities were strongly inhibited by the RBOH–NADPH oxidase inhibitor DPI and by the Ca2+ surrogate antagonist La3+, but the voltage-dependent Ca2+ channel blocker verapamil was only inhibitory at concentrations higher than those active on animal L-type Ca2+ channels. Concentrations >5 mM EGTA (chelating Ca2+ in the apoplast) and Li+ (inhibiting PI cycle dependent endogenous Ca2+ fluxes) also inhibited both activities. W7, inhibitor of binding of Ca–CaM to its target protein, enhanced both activities, but the inactive analogue W5 showed a similar effect. Our data suggest that Ca2+ from exocellular and, to a lesser extent, from endocellular stores is involved in oxidative activities, and that RBOH–NADPH oxidase is the main system supporting them. Ca2+ activation of the PM cytosolic side of RBOH–NADPH oxidase is probably the key to Ca2+ involvement in these processes. Roots induced by MeJA or MeSA showed significant enhancement of both oxidative activities, as corresponding to the oxidative burst evoked by the two phytohormones in the root apoplast. But while ECPOX activity showed a response to the effectors similar to that described above for non-induced roots, O 2 .? generation activity in the apoplast of induced roots was insensitive to EGTA, verapamil and Li+, the inhibitors of exogenous and endogenous Ca2+ fluxes; only DPI and La3+ were inhibitory. As exogenously added 0.1 mM Ca2+ also increased O 2 .? generation, we propose that, in these roots, activation of RBOH–NADPH oxidase by Ca2+ could be regulated by Ca2+ sensors in the apoplast.  相似文献   

11.
Chemiluminescent measurement of cholesterol can be performed in various biological tissues and fluids. The method described in this study has a sensitivity of 54 pmol. The tissue samples used for the determination of cholesterol can be reduced to as little as 1 mg and assay can be performed on diluted biological fluids, allowing sampling of plasma or serum as little as 5 μl. Cholesterol is solubilized in sodium cholate and aliquots are added to a reaction mixture containing cholesterol oxidase, luminol and peroxidase. Cholesterol oxidase, in the presence of cholesterol yields H2O2 which produces light in presence of luminol and peroxidase. Emitted light is quantified at a wavelength of 420 nm by means of a photomultiplier. Optimal conditions of the assay were determined and examples of cholesterol determinations, in blood plasma and nervous tissues, are presented.  相似文献   

12.
Several methods for the quantitative detection of different compounds, e.g., L‐amino acids, sugars or alcohols in liquid media were developed by application of an automatic measuring unit including a fluid chip‐calorimeter FCC‐21. For this purpose, enzymes were immobilized covalently on the inner and outer surface of CPG (controlled porous glass)‐spherules with an outer diameter of 100 μm and filled into a micro flow‐through reaction chamber (VR = 20 μL). The design of the measuring cell allows for easy insertion into the calorimeter device of a stored series of comfortably pre‐fabricated measuring cells. These cells can be filled with different enzyme immobilizates. Different oxidases were used and co‐immobilized with catalase for the improvement of the detection sensitivity. A signal amplification could be achieved up to a factor of 3.5 with this configuration. β‐D‐glucose, ethanol and L‐lysine could be detected in a range of 0.25–1.75 mM using glucose oxidase, alcohol oxidase and lysine oxidase. The group of oxidases in combination with the enzymatic catalysis of the intermediate H2O2 allows the quantitative detection of a large number of analytes. A good measurement and storage stability could be achieved for several weeks by this immobilization method. In addition to enzyme‐based detection reactions, it was shown that living microorganisms can be immobilized in the reaction chamber. Thus, the system can be used as a whole‐cell biosensor. The quantitative detection of phenol in the range of 10–100 μM could be performed using the actinomycete Rhodococcus sp. immobilized on glass beads by means of embedding into polymers.  相似文献   

13.
In order to establish a standard procedure for the spectrophotometric determination of urinary and plasma oxalate with oxalate oxidase (Laker, M.F., et al. (1980) Clin. Chem. 26, 827-830; Sugiura, M., et al. (1980) Clin. Chim. Acta 105, 393-399) and to define the limitations of the method, the procedures and reactions involved in the assay have been examined. Among the chromogenic hydrogen donors for peroxidase tested, a combination of 3-methyl-2-benzothiazolinone hydrazone (MBTH) and sodium N-sulfopropylaniline (HALPS) was found to be best for the oxalate determination under the conditions used. Urine contained substance(s) which were inhibitory to the measurement of hydrogen peroxide by the peroxidase-catalyzed oxidative condensation of MBTH and HALPS, but they were largely removed by charcoal treatment at pH 5.6 without significant loss of oxalate. Deproteinization of plasma was carried out by ultrafiltration through a membrane cone (Centriflo CF-25) at neutral pH. The plasma oxalate ultrafiltrability under the conditions employed was calculated to be approximately 95%. A standard assay system for oxalate in these urine and plasma samples was then set up based on a series of studies on the reactions involved in the assay. In the case of normal plasma, however, the absorbance change was very small due to the low concentration of oxalate, and in addition, pretreatment of plasma with excess oxalate decarboxylase followed by the ultrafiltration and oxalate determination did not abolish completely the oxalate oxidase-dependent absorbance increase. It was concluded that the enzymic method was useful for the assay of urinary oxalate and in detecting elevated levels of plasma oxalate such as those in hemodialysis patients but was not sensitive enough to determine accurately the normal or decreased level of oxalate in plasma. The apparent concentration of oxalate in normal human plasma was measured in this work as 3.5 +/- 0.8 microM (mean +/- S.D., n = 8), and this result was interpreted to mean that the concentration of plasma oxalate was less than approximately 3.5 microM, as estimated by the present method.  相似文献   

14.

Background

Because H2O2 is generated by various oxidase-catalyzed reactions, a highly sensitive determination method of H2O2 is applicable to measurements of low levels of various oxidases and their substrates such as glucose, lactate, glutamate, urate, xanthine, choline, cholesterol and NADPH. We propose herein a new, highly sensitive method for the measurement of H2O2 and glucose using fluorescence correlation spectroscopy (FCS).

Methodology/Principal Findings

FCS has the advantage of allowing us to determine the number of fluorescent molecules. FCS measures the fluctuations in fluorescence intensity caused by fluorescent probe movement in a small light cavity with a defined volume generated by confocal illumination. We thus developed a highly sensitive determination system of H2O2 by FCS, where horseradish peroxidase (HRP) catalyzes the formation of a covalent bond between fluorescent molecules and proteins in the presence of H2O2. Our developed system gave a linear calibration curve for H2O2 in the range of 28 to 300 nM with the detection limit of 8 nM. In addition, by coupling with glucose oxidase (GOD)-catalyzed reaction, the method allows to measure glucose in the range of 80 nM to 1.5 µM with detection limit of 24 nM. The method was applicable to the assay of glucose in blood plasma. The mean concentration of glucose in normal human blood plasma was determined to be 4.9 mM.

Conclusions/Significance

In comparison with commercial available methods, the detection limit and the minimum value of determination for glucose are at least 2 orders of magnitude more sensitive in our system. Such a highly sensitive method leads the fact that only a very small amount of plasma (20 nL) is needed for the determination of glucose concentration in blood plasma.  相似文献   

15.
Summary The reproducibility of the glucose oxidase peroxidase method for assaying for -glucosidase activity was shown to be influenced by the nature of the lignocellulosic substrate on which the cellulolytic fungi was grown. When culture filtrates from various pretreated aspenwood and wheat straw fractions were added to the glucose oxidase assay they all decreased the detected glucose values. It appears that various lignocellulosic components influence the assay although lignin derived materials appeared to be the major inhibitors.  相似文献   

16.
The relationship between the production of extracellular H2O2, hydrogen peroxide-producing enzymes and ligninolytic peroxidase was examined during solid-state cultivation ofPanus tigrinus on wheat straw. Glyoxal oxidase, Mn2+-dependent peroxidase and glucose oxidase, capable of H2O2 generation, were found in the extracellular enzyme preparation. The production of H2O2 has two maxima: the maximal production correlates well with the maximal activities of glyoxal oxidase and Mn2+-dependent peroxidase, while another, lower peak of H2O2 generation is related to the second peak of Mn2+-dependent peroxidase activity. The contribution of glucose oxidase to the production of hydrogen peroxide is probably only marginal. Comparison of the dynamics of these extracellular activities and the ligninolytic peroxidase showed good temporal correlation indicating an interrelation of the two processes.  相似文献   

17.
An assay for reduced and oxidized glutathione was adapted to isolated rat epididymal adipocytes in order to correlate pentose phosphate cycle activity and glutathione metabolism. In collagenase-digested adipocytes the [GSH/GSSG] molar ratio was in excess of 100. Cells incubated for 1 hr with low glucose concentrations (0.28–0.55 mm) had higher GSH contents (3.2 μg/106 cells) than in the absence of glucose (2.3 μg/106 cells). The glutathione oxidant diamide caused a dose-related decrease in intracellular GSH, an increase in GSSG released into the medium, but no detectable change in the low intracellular GSSG content. The intracellular content of GSH and amount of GSSG released into the medium were therefore taken to reflect the glutathione status of the adipocytes most closely. Addition of H2O2 to a concentration of 60 μm to adipocytes caused to decline within 5 min in GSH content, which was less severe and more rapid to recover in the presence of 1.1 mm glucose, suggesting that the concomitant stimulation of glucose C-1 oxidation induced by the peroxide in the presence of glucose provided NADPH for regeneration of GSH. Further evidence for tight coupling between adipocyte [GSH/GSSG] ratios and pentose phosphate cycle activity was that (i) lowering intracellular GSH to 35–60% of control values by agents as diverse in action as t-butyl hydroperoxide, diamide, or the sulfhydryl blocker N-ethylmaleimide resulted in optimal stimulation of glucose C-1 oxidation and fractional pentose phosphate cycle activity, and (ii) incubating adipocytes directly with 2.5 mm GSSG resulted in a slight increase in glucose C-1 oxidation and when 0.5 mm NADP+ was also added a synergistic effect on pentose phosphate cycle activity was found. On the other hand, electron acceptors such as methylene blue did not lower cellular GSH content, but did stimulate the pentose phosphate cycle, confirming a site of action independent of glutathione metabolism. The results show that (i) glucose metabolism by the pentose phosphate cycle contributes to regeneration of GSH and that (ii) glutathione metabolism either directly or via coupled changes in [NADPH/NADP+] ratios may play a significant role in short-term control of the pentose phosphate cycle.  相似文献   

18.
Two nitrogen-deregulated mutants of Phanerochaete chrysosporium, der8-2 and der8-5, were isolated by subjecting wild type conidia to gamma irradiation, plating on Poly-R medium containing high levels of nitrogen, and identifying colonies that are able to decolorize Poly-R. The mutants showed high levels of ligninolytic activity (14C-synthetic lignin 14CO2), and lignin peroxidase, manganese peroxidase and glucose oxidase activities in both low nitrogen (2.4 mM) and high nitrogen (24 mM) media. The wild type on the otherhand displayed these activities in low nitrogen medium but showed little or no activities in high nitrogen medium. Fast protein liquid chromatographic analyses showed that the wild type as well as the der mutants produce three major lignin peroxidase peaks (designated L1, L2 and L3) with lignin peroxidase activity in low nitrogen medium. Furthermore, in low nitrogen medium, mutant der8-5 produced up to fourfold greater lignin peroxidase activity than that produced by the wild type. In high nitrogen medium, the wild type produced no detectable lignin peroxidase peaks whereas the mutants produced peaks L1 and L2, but not L3, and a new lignin peroxidase protein peak designated LN. Mutants der8-2 and der8-5 also produced high levels of glucose oxidase, an enzyme known to be associated with secondary metabolism and an important source of H2O2 in ligninolytic cultures, both in low and high nitrogen media. In contrast, the wild type produced high levels of glucose oxidase in low nitrogen medium and only trace amounts of this enzyme in high nitrogen medium. The results of this study indicate that the der mutants are nitrogen-deregulated for the production of a set of secondary metabolic activities associated with lignin degradation such as lignin peroxidases, manganese peroxidases and glucose oxidase.  相似文献   

19.
Two strains of Lactobacillus plantarum accumulated H2O2 when grown aerobically in a complex glucose based medium. The H2O2 accumulation did not occur immediately on exposure of the culture to O2 but was delayed for a time which, in the case of one strain, was dependent on the amount of inoculum used to seed the culture. The accumulation was always preceded by an increase in the rate of O2 utilization by the cultures. The latter coincided approximately with an increase in specific activity of NADH oxidase, pyruvate oxidase and NADH peroxidase. H2O2 was not a product of NADH oxidase in vitro but was formed in substantial quantities from O2 during oxidation of pyruvate. The three enzymes were induced by O2 and H2O2; the induction of NADH oxidase responded to lower levels of O2 (but not of H2O2) than the pyruvate oxidase or the NADH peroxidase.Abbreviations MRSG Mann, Rogosa and Sharpe medium (1960) with glucose as fermentation source - TPP thiamin pyrophosphate  相似文献   

20.
Nitrate reductase of spinach (Spinacea oleracea L.) leaves which had been inactivated in vitro by treatment with NADH and cyanide, was reactivated by incubation with oxidant systems and measured as FMNH2-dependent activity. Ferricyanide, a purely chemical oxidant, produced rapid maximal reactivation (100%) which was 90% complete in less than 3 min. Reactivation occurred slowly and less completely (30–75% in 30 or 60 min) when the enzyme was incubated with pure horseradish peroxidase alone, depending on using one or 20 units and time. Addition of glucose and glucose oxidase to generate hydrogen peroxide increased reactivation slightly (10–15%) with 20 units of peroxidase but more (30–50%) with one unit and to 75–90% of ferricyanide values. Adding catalase decreased reactivation by more than half either with or without glucose oxidase. Glucose and glucose oxidase alone did not cause reactivation. Addition of superoxide dismutase increased reactivation from 50–75% of ferricyanide values with one unit of peroxidase alone but had no effect on greater reactivation obtained in the presence of glucose oxidase. The addition of p-cresol and manganese together increased reactivation with one unit of peroxidase and in the presence of glucose oxidase by about double, but omission of manganese had no effect. However, as shown previously, although trivalent manganese was formed, the residual presence of manganous ions inhibited reactivation. Nevertheless, peroxidase systems either alone or with additionally generated hydrogen peroxide can induce substantial reactivation of nitrate reductase in physiologically relevant conditions.Abbreviations EDTA ethylenediaminetetraacetic acid - FMN flavine mononucleotide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号