首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Phospholipases A2 are classified into two groups, I and II, according to differences in the polypeptide-chain length and the intramolecular-disulfide bondings. The effects of Ca2+ on the kinetic parameters for the hydrolysis of monodispersed and micellar phosphatidylcholines, catalyzed by a cobra (Naja naja atra) enzyme (Group I) and by mamushi (Agkistrodon halys blomhoffii) and habu (Trimeresurus flavoviridis) enzymes (Group II), were studied by the pH-statassay method at 25 degrees C, pH 8.0-8.2, and ionic strength 0.1-0.2. The results were compared with those reported for the other Group I and II enzymes. The Ca2+ binding was clearly shown to be essential for the catalysis of all the phospholipases A2. However, the substrate binding to Group I enzymes was found to be independent of the Ca2+ binding. On the other hand, the substrate binding to Group II enzymes was facilitated more than 10 times by the binding of Ca2+ to the enzymes. This was interpreted in terms of conformation changes of the peptide loop of residues 26 to 44 accompanying the Ca2+ binding. The latter result, but not the former, seems compatible with the hypothesis for interpreting the catalytic mechanism of phospholipases A2 that an intermediate complex should be stabilized by the coordination of the bound Ca2+ ion with the phosphoryl group and the carbonyl oxygen atom of the ester bond at the sn-2 position of the bound substrate molecule [Verheij et al. (1980) Biochemistry 19, 743-750 and (1981) Rev. Physiol. Biochem. Pharmacol. 91, 91-203]. According to the similarity in the primary and tertiary structures of the active sites of both types of enzymes [Renetseder et al. (1985) J. Biol. Chem. 260, 11627-11634], it is supposed that similar intermediate complexes may occur even for Group I enzymes, at least in the transition state of the productive complexes.  相似文献   

2.
Phospholipases A2 (PLA2) were isolated and purified from the Taiwan cobra (Naja naja atra) and several snake species of the same or different genera by semipreparative cation-exchange and reversed-phase HPLC. They were shown to possess different enzymatic activity toward the synthetic substrate L-alpha-lecithin by the fatty-acid titration method. The immunological cross-reactivity of these structurally similar isotoxins was investigated using immunodiffusion, precipitin reaction and enzyme-linked immunosorbent assay (ELISA). PLA2 from the venoms of the same species such as the Taiwan cobra (Naja naja atra) and the Indian cobra (Naja naja naja) showed a high degree of antigenic resemblance whereas no immunoreactivity was observed among those PLA2 from different genera. Quantitative immunoreactivity assays by ELISA revealed the partial cross-reactivity between the antibody against PLA2 of Taiwan cobra and those isoenzymes from snakes of remotely-related species. The immunological relatedness between PLA2 of the representative snake species of different genera and families is shown to be correlated with the extent of sequence homology among these enzymes.  相似文献   

3.
Interactions of dimeric Trimeresurus flavoviridis (the Habu snake) phospholipase A2 (PLA2), des-octapeptide(1-8)-PLA2 (L-fragment) (14% of PLA2 activity), and p-bromophenacyl bromide (BPB)-inactivated PLA2 (BP-PLA2) with dyes, namely, proflavine, 1-anilinonaphthalene-8-sulfonate (Ans), and 2-toluidinylnaphthalene-6-sulfonate (Tns), were investigated. All dyes were bound in a 1:1 molar ratio to the subunit of the proteins. Proflavine was bound most strongly to PLA2 and Ans and Tns were bound to the three proteins with comparable affinities. Capabilities of the dyes for inhibiting alkylation of His-47 of PLA2 with BPB were in the following order: Ans greater than proflavine greater than Tns. Fluorescences of Ans and Tns that were increased in the presence of PLA2 were further greatly enhanced upon the addition of Ca2+, with concomitant formation of the ternary complexes. Ca2+, however, inhibited, competitively or noncompetitively, the bindings of the dyes to PLA2. All dyes were bound to the active site of PLA2 but with different orientations. Inactivation of L-fragment with BPB was inhibited by the dyes in the following order: Tns greater than proflavine approximately Ans. Addition of Ca2+ to the binary complexes formed from L-fragment and Ans or Tns caused no additional enhancement of fluorescence in spite of the formation of the ternary complexes. The active site structures are different between PLA2 and L-fragment, and the N-terminal octapeptide moiety of PLA2 possibly plays a role in maintaining the optimally arranged active site structure of the molecule. Comparison of the data suggests that the N-terminal moieties of PLA2S from snakes of an elapid family and from mammalian pancreas are essential for catalysis of a micellar substrate, whereas those of PLA2S from snakes of a viperid family, such as T. flavoviridis, are not. BP-PLA2 bound Ca2+ and was similar to L-fragment in terms of the fluorescence measurements. It appears that the active site of PLA2 has a space large enough to accommodate p-bromophenacyl, Ans or Tns, and Ca2+ together. Comparison of the emission maxima of Ans and Tns complexed with the three proteins indicated that Tns could be a useful fluorescent probe informing us of the state (disorder) of the active site of PLA2.  相似文献   

4.
The hydrolysis of 1,2-dihexanoyl-sn-glycero-3-phosphorylcholine (diC6PC), catalyzed by a cobra (Naja naja atra) venom phospholipase A2, was studied at 25 degrees C ionic strength 0.1 in the presence of 3-10 mM Ca2+, which can saturate the Ca2+-binding site of the enzyme. The initial velocity data, obtained at various concentrations of the substrate below the critical micellar concentration (cmc), were analyzed according to the Michaelis-Menten equation. The Km value was practically independent of pH (between pH 6.75 and 10.30). This finding was consistent with the result of a direct binding study on monodispersed n-alkylphosphorylcholines (Teshima et al. (1981) J. Biochem. 89, 1163-1174). The hydrolysis of the substrate was competitively inhibited by the presence of monodispersed n-dodecylphosphorylcholine (n-C12PC). These results indicated that the substrate and n-C12PC compete for the same site on the enzyme molecule. The pH dependence curve of the kinetic parameter, kcat/Km, exhibited three transitions, below pH 8, between pH 8 and 9.5, and above pH 10. The analysis indicated the participation of three ionizable groups with pK values of 7.25, 8.50, and 10.4. The deprotonation of the first group and the protonation of the third group were found to be essential for the catalysis. The first group was assigned as His 48 in the active site on the basis of its pK value, which had been determined from the pH dependence of the binding constant of Ca2+ (Teshima et al. (1981) J. Biochem. 89, 13-20).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Tryptophan (Trp) fluorescence of two phospholipases A2 (PLA2) from Naja naja atra and Naja nigricollis snake venoms was quenched by acrylamide and iodide. Trp residues in N. naja atra PLA2 were equally accessible to acrylamide and iodide. Iodide quenching studies indicate that there are two classes of Trp fluorophores in N. nigricollis CMS-9. The accessible class consists of Trp-18 and Trp-19. Removal of the N-terminal octapeptide caused a perturbation of the micro-environment of the Trp residues in the PLA2 enzymes. The presence of a substrate lowers the susceptibility of the Trp residues to iodide quenching in N. naja atra PLA2, suggesting that all three Trp residues are at the substrate binding site, but in N. nigricollis CMS-9 Trp-18 and Trp-19 are related to substrate binding.  相似文献   

6.
Modification of His-47 and removal of the N-terminal octapeptide caused a different effect on the structure of Naja naja atra (Taiwan cobra) phospholipase A2 (PLA2). Unlike native enzyme, Ca2+ induced an alteration in the structural flexibility of His-modified PLA2. Moreover, the spatial positions of Trp residues in His-modified PLA2 were not properly rearranged toward lipid-water interface in the presence of Ca2+. CD spectra and fluorescence measurement showed that the dynamic properties of Trp residues and the gross conformation of N-terminally truncated PLA2 were totally different from native enzyme. Although a precipitous drop in the enzymatic activity was observed with modified PLA2, His-modified PLA2 and N-terminally truncated PLA2 retained cytotoxicity on inducing necrotic death of human neuroblastoma SK-N-SH cells. Our data suggest that structural perturbations elicited by the chemical modification cause a dissociation of enzymatic activity and cytotoxicity of PLA2.  相似文献   

7.
Bindings of the phospholipase A2 from Trimeresurus flavoviridis to the monodispersed and micellar n-alkylphosphorylcholines (n-CnPC) were studied at 25 degrees C and ionic strength 0.2 by the aromatic CD and tryptophyl fluorescence methods, respectively. The bindings to micelles of the substrate analog were analyzed by assuming that the micellar surface has multiple binding sites for the enzyme and that these sites are identical and mutually independent. The enzyme binding site was found to accommodate a constant number of the substrate (monomer) molecules, N = 9-13. The binding constant to the micelle was about 40 times greater than it was to the monodispersed substrate. The binding constant to the micellar substrate analog increased on the binding of Ca2+ to the enzyme and decreased on modification of the N-terminal alpha-NH2 group, whereas the binding to the monodispersed substrate analog was independent of pH, of the Ca2+ binding, and of the chemical modification of the alpha-NH2 group. The kinetics of the hydrolyses of monodispersed and micellar dihexanoylphosphatidylcholines (diC6PC) were studied at 25 degrees C and ionic strength 0.2 by the pH-stat method in the presence of saturating amounts of Ca2+. The catalytic center activity, kappa cat, as well as the binding constant, 1/Km, for the micellar substrate, were found to be much greater than those for the monodispersed substrate. The binding constant, 1/Km, of the monodispersed substrate was independent of pH; this was in good agreement with that of the substrate analog described above. The pH-dependence curve of kappa cat for the monodispersed substrate exhibited two transitions, one below pH 6.5 and the other above pH 9.5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The pH dependence of the chemical reaction rate of p-bromophenacyl bromide (BPB) with His 48 of cobra (Naja naja atra) venom phospholipase A2, in which the alpha-NH2 group had been selectively modified to an alpha-keto group, was studied at 25 degrees C and ionic strength 0.1 in the absence of Ca2+. The pH-dependence curve was monophasic with a midpoint at pH 7.9, which corresponds to the pK value of His 48 of the alpha-NH2-modified enzyme, whereas the curve for the intact enzyme was biphasic, indicating participation of two ionizable groups with pK values of 7.3 and 8.55 (Teshima et al. (1982) J. Biochem. 91, 1778-1788). These two groups were thus identified as His 48 and the alpha-NH2 group, respectively. The pH dependence of the binding constant of Ca2+ to the alpha-NH2-modified enzyme was studied at 25 degrees C and ionic strength 0.1 by measuring the tryptophyl fluorescence changes. The pH-dependence curve was very similar to that for the intact enzyme (Teshima et al. (1981) J. Biochem. 89, 13-20), and it was interpreted in terms of participation of His 48 and Asp 49 (pK 5.4). The absence of participation of the alpha-NH2 group in the Ca2+ binding was thus confirmed. Bindings of monodispersed n-dodecylphosphorylcholine (n-C12PC) and micellar n-hexadecylphosphorylcholine (n-C16PC) to the alpha-NH2-modified enzyme were studied at 25 degrees C and ionic strength 0.1 by the aromatic circular dichroism (CD) and tryptophyl fluorescence methods, respectively. The binding constant of the monodispersed substrate was very similar to that for the intact enzyme (Teshima et al. (1981) J. Biochem. 89, 1163-1174). The binding constant of the micellar substrate to the modified enzyme in the presence of Ca2+ was also very similar to that for the intact enzyme-Ca2+ complex (Teshima et al. (1983) J. Biochem. 94, 223-232), and the pH-dependence curve was interpreted in terms of participation of His 48. On the other hand, the binding constant of the micellar substrate to the modified apoenzyme was much smaller than that for the intact apoenzyme. Nevertheless, the pH-dependence curve could be interpreted in terms of participation of His 48 and Asp 49. From these findings, it was concluded that the ionization state of the alpha-NH2 group of cobra venom phospholipase A2 is essentially irrelevant to the bindings of Ca2+ and also of the monodispersed and micellar substrates.  相似文献   

9.
Phospholipase A2 (PLA2) from Naja naja atra (Taiwan cobra) snake venom was subjected to lysine modification with trinitrobenzene sulphonic acid (TNBS), and two major trinitrophenylated (TNP) derivatives, TNP-1 and TNP-2, were separated by h.p.l.c. TNP-1 contained only one TNP group on Lys-6 and showed a marked decrease in enzymic activity, but still retained 45% of the lethal toxicity. Both Lys-6 and Lys-65 were modified in TNP-2, and modification of Lys-65 caused a further reduction of the lethal toxicity to 12.6%. However, the antigenicity of both TNP-1 and TNP-2 remained unchanged. The reactivity of Lys-6 and Lys-65 toward TNBS was greatly enhanced by Ca2+ and dihexanoyl-lecithin, suggesting that the two Lys residues are not directly involved in the binding of Ca2+ and substrate. The modified derivatives retained their affinity for Ca2+, indicating that Lys-6 and Lys-65 did not participate in the Ca2+ binding. The TNP derivatives could be regenerated with hydrazine hydrochloride. The biological activities of the regenerated PLA2 are almost the same as those of native PLA2. These results indicate that Lys-6 and Lys-65 are important for the biological activities of PLA2, and incorporation of a bulky TNP group on Lys-6 and Lys-65 might give rise to a distortion of the active conformation of PLA2.  相似文献   

10.
The basic phospholipase A2 from Naja nigricollis (African spitting cobra) snake venom is enzymatically less active but more toxic than the acidic phospholipase A2 from Naja naja atra (Taiwan cobra) snake venom, following injection into the right lateral ventricle of the brain of rats. When radiolabeled with 125I, these phospholipases A2 retained enzymatic activities and lethal potencies. Both enzymes bound with high affinity and specificity to brain synaptic plasma membrane preparations in vitro even in the absence of calcium, suggesting a non-catalytic binding. The acidic enzyme, in a calcium-free medium, had two binding components with Kd values of 1 X 10(-10) and 2.75 X 10(-8) M and Bmax values of 6 X 10(-13) and 3.4 X 10(-11) mol/mg, respectively. Multiple specific and nonspecific binding components were observed for each phospholipase A2; saturability for all of the binding sites was conclusively demonstrated only for the N. naja atra phospholipase A2 in a calcium-free medium (Bmax = 3.4 X 10(-11) mol/mg). The levels of specific and total binding were 150 pmol/mg and 450 pmol/mg, respectively, for the comparatively toxic enzyme and 15 pmol/mg and 35 pmol/mg, respectively, for the comparatively nontoxic enzyme at a concentration of 2.5 X 10(-8) M. These levels of binding (both total and specific) were directly correlated with the intraventricular lethal potencies of the phospholipases A2 (0.5 and 5.0 micrograms/rat for the N. nigricollis and N. naja atra phospholipases A2, respectively), suggesting a possible relationship between binding and lethal potency. Carbamylation of lysines reduced the levels of binding and the lethal potencies of both enzymes to a greater extent than their enzymatic activities. Pretreatment with high temperature, proteinases, phospholipases A2 or C suggested that radiolabeled phospholipase A2 binds to phospholipids rather than proteins. However, only the N. naja atra phospholipase A2 manifested a strict dependence on a divalent cation (Ca2+ or Sr2+) for most of its binding. The N. nigricollis enzyme demonstrated a much lower rate of dissociation from synaptic plasma membranes than did N. naja atra phospholipase A2, suggesting that hydrophobic interactions are more important in the binding of the more toxic enzyme as compared to the less toxic enzyme. It is proposed that differences in the extent of high-affinity noncatalytic binding to membrane phospholipids may be at least partly responsible for the marked difference in central toxicities of these two phospholipases A2.  相似文献   

11.
Studies are reported on the inhibition of phospholipase A2 (PLA2) from porcine pancreas, cobra (Naja naja) venom, and the P388D1 macrophage-like cell line by human recombinant lipocortin I and bovine lung calpactin I. Membrane vesicles prepared from 1-stearoyl,2-arachidonoyl phosphatidylcholine (PC) and other PCs were utilized as substrate. Binding studies using sucrose flotation gradients showed that both lipocortin I and calpactin I bind to these vesicles although less tightly than to vesicles prepared from anionic phospholipids or fatty acids. Binding to PC was somewhat enhanced by Ca2+. Inhibition of cobra venom PLA2 was not observed when PC vesicles were used as substrate but was when dipalmitoyl phosphatidylethanolamine was used. Both the pancreatic and macrophage enzymes were inhibited when acting on PC. Interestingly, the inhibition of the macrophage enzyme toward PC depended on the fatty acid attached to the sn-2 position of PC with arachidonate greater than oleate greater than palmitate. Inhibition was also highest at low [PC]; these inhibition results can be explained by the "substrate depletion model" (Davidson, F. F., Dennis, E. A., Powell, M., and Glenney, J. (1987) J. Biol. Chem. 262, 1698-1705). Experimental and theoretical considerations suggest that the in vitro inhibition by lipocortins of this macrophage PLA2 from a cell that makes lipocortin and is active in prostaglandin production is due to effects on substrate availability rather than direct inhibition.  相似文献   

12.
Bindings of cobra venom phospholipases A2 to micelles of n-hexadecylphosphorylcholine were studied by the tryptophyl fluorescence method at 25 degrees C and ionic strength 0.1. The data were analyzed by assuming that the micellar surface has multiple binding sites for the enzyme and these sites are identical and mutually independent. The enzyme binding site was found to accommodate a constant number of substrate (monomer) molecules, N = 10, 5 or 13 for N. naja atra apoenzyme and its Ca2+ complex, and N. naja kaouthia apoenzyme, respectively. The binding constant of the enzymes to the micelle, Kmic = 0.18-3.1 X 10(6) M-1, was 9-160 times greater than that to the monomeric substrate, Kmon = 2 X 10(4) M-1 (Teshima et al. (1981) J. Biochem. 89, 1163-1174). This was interpreted in terms of the presence of an additional substrate-binding site in the enzyme molecule. The binding constant of the enzyme-Ca2+ complex to the micelle was smaller than that for the apoenzyme over a wide range of pH. The pH dependence of the binding constant of the apoenzyme to the micelle was well interpreted in terms of pK shifts of two ionizable groups from 5.4 to 5.53 and 7.55 to 7.95. The pH dependence curve for the Ca2+ complex, which lacked the former transition, was interpreted in terms of the pK shift of only a single ionizable group from 7.25 to 7.55. The former ionizable group was assigned as Asp 49, to which Ca2+ can coordinate, and the latter as His 48 in the active site on the basis of the reported pK values of these ionizable groups in the apoenzyme and Ca2+ complex (Teshima et al. (1981) J. Biochem. 89, 13-20 and Teshima et al. (1982) J. Biochem. 91, 1777-1788). No participation of the alpha-amino group with a pK value of 8.55 was observed.  相似文献   

13.
Some snake venom neurotoxins, such as beta-bungarotoxin (beta-BuTX), which possess relatively low phospholipase A2 (PLA2) activity, act presynaptically to alter acetylcholine (ACh) release both in the periphery and in the CNS. In investigating the mechanism of this action, we found that beta-BuTX (5 and 15 nM) inhibited phosphorylation, in both resting and depolarized synaptosomes, of a wide range of proteins, including synapsin I. Naja naja atra PLA2, which has higher PLA2 activity, also inhibited phosphorylation but was less potent than beta-BuTX. At 1 nM, beta-BuTX and N. n. atra PLA2 inhibited phosphorylation of synapsin I only in depolarized synaptosomes. Synaptosomal ATP levels were not affected by 5 or 15 nM beta-BuTX or by 5 nM N. n. atra PLA2. Limited proteolysis, using Staphylococcus aureus V-8 protease, indicated that beta-BuTX inhibited phosphorylation of synapsin I in both the head and the tail regions. The inhibition of phosphorylation was not antagonized by nordihydroguaiaretic acid or indomethacin, suggesting that arachidonic acid derivatives do not mediate this inhibition. Furthermore, inhibition of phosphorylation by beta-BuTX and N. n. atra PLA2 was not altered in the presence of the phosphatase inhibitor okadaic acid, suggesting that stimulation of phosphatase activity is not responsible for this inhibition. Inhibition of protein phosphorylation by PLA2 neurotoxins and enzymes may be associated with an inhibition of ACh release.  相似文献   

14.
Secretory phospholipases A2 (PLA2) from Naja naja naja (cobra snake) venom, from Bothrops neuwiedii (crotalid snake) venom (two isoforms) and from bee venom were modified with tresylated monomethoxy poly(ethylene glycol) (TMPEG). The kinetic and inflammatory properties of the adducts (PEG-PLA2) were measured. As found by gel permeation chromatography, 95-100% of P-1 PLA2 from B. neuwiedii and PLA2 from N. naja naja venom change their chromatographic mobility after TMPEG treatment. By contrast, only 50-60% of both P-3-PLA2 from B. neuwiedii and PLA2 from bee venom modify their elution profile from Superdex 75. All the modified proteins preserved the enzymatic activity toward phospholipid monolayers, but with a reduced specific activity and greater lag times than the unmodified controls. These results suggest that the PEG-PLA2 complexes would have an altered interaction with lipid membranes. The PEG-linked proteins preserve their edema-inducing activity evaluated by the rat hind-paw edema test except for N. naja naja PEG-PLA2 in which inflammatory activity was significatively decreased. Altogether, the results show a partial dissociation of catalytic and inflammatory activities of Group II and III secretory PLA2s after their modification with PEG.  相似文献   

15.
The effects of some cholinergic ligands, harmala alkaloids and local anesthetics on the activity of eel electroplax and Naja naja siamensis venom acetylcholinesterase have been studied. In most cases, eel electroplax was found to be more susceptible towards inhibition than the venom acetylcholinesterase. No major difference was observed with respect to the type of inhibition in both enzymes. The activation of the two enzyme preparations by inorganic cations (Ca2+, Mg2+ and Na+) showed a similar pattern. In both preparations, the onset of activation was detectable at much lower concentration with the divalent metal ions than with the monovalent Na+. Antagonism between Ca2+ and decamethonium, tubocurarine and tetracaine in both enzymes approached competitive kinetics. The onset of substrate inhibition is delayed by Ca2+ (30 mM) in both enzymes. It is suggested that the Ca2+ binding site overlaps with the substrate inhibitory site. It is concluded that cobra venom acetylcholinesterase has similar allosteric binding sites to those of eel electroplax.  相似文献   

16.
Phospholipases A2 (PLA2s) are classified into two groups, I and II, according to differences in the polypeptide-chain length and intramolecular disulfide bondings. The hydrolysis of monodispersed 1,2-dihexanoyl-sn-glycero-3-phosphorylcholine (diC6PC), catalyzed by bovine pancreas PLA2 (Group I) was studied at 25 degrees C and ionic strength 0.2, and the initial velocity data were analyzed by means of the Michaelis-Menten equation. The Michaelis constant, Km, was found to be practically independent of Ca2+ concentration and also of pH value. The latter result indicates no participation of the ionizable groups in the active site in the substrate binding. The pH-dependence curve of the logarithm of the catalytic center activity, kcat, obtained in the presence of a practically saturating amount of Ca2+, showed three transitions ascribable to the participation of three ionizable groups with pK values of 5.00, 8.40, and 9.50. The respective groups were tentatively assigned to the catalytic group His 48, the N-terminal alpha-amino group, and invariant Tyr 52, which is located in close proximity to the imidazole ring of His 48. Deprotonation of His 48 and protonation of Tyr 52 were shown to be essential to the catalysis. The importance of the ionization state of the alpha-amino group was also indicated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
W Yuan  D M Quinn  P B Sigler  M H Gelb 《Biochemistry》1990,29(25):6082-6094
The action of the phospholipases A2 (PLA2s) from Naja naja naja, Naja naja atra, and Crotalus atrox venoms as well as the enzyme from porcine pancreas on a number of short-chain, water-soluble substrates was studied. The inhibition of these enzymes by short-chain phosphonate- and thiophosphonate-containing phospholipid analogues was also examined. The kinetic patterns observed for the action of the venom PLA2s on substrates containing phosphocholine head groups all deviated from a classical Michaelis-Menten-type behavior. With a substrate containing an anionic head group, the kinetic pattern observed was more normal. In contrast, Michaelis-Menten-type behavior was observed for the action of the porcine pancreatic PLA2 acting on all of the substrates studied. A short-chain phospholipid analogue in which the enzyme-susceptible ester was replaced with a phosphonate group was found to be a tight-binding inhibitor of the venom PLA2s with IC50 values that were some 10(4)-10(5)-fold lower than the concentration of substrate used in the assay. The degree of inhibition was found to depend dramatically on the stereochemical arrangement of substituents in the inhibitor which strongly suggests that the inhibitors are binding directly to the active site of the PLA2s. By comparison, the phosphonate analogue functioned as a poor inhibitor of the porcine pancreatic PLA2. Direct inhibitor binding studies indicated that the short-chain phosphonate inhibitor bound weakly to the venom enzymes in the absence of the short-chain substrates. Several other unusual features of the inhibition were also observed. The data are interpreted in terms of a model in which the enzyme and substrate form a lipid-protein aggregate at substrate concentrations below the critical micelle concentration (cmc). Possible reasons for the selective binding of the inhibitor to the enzyme-substrate microaggregate are discussed.  相似文献   

18.
本文采用日立835-50型氨基酸自动分析仪测定了广东眼镜蛇蛇毒与眼镜王蛇蛇毒的氨基酸成分,结果表明两种蛇毒的氨基酸组成基本相同,但多种氨基酸的含量存在明显差异,为蛇毒鉴别和质控提供实验依据。  相似文献   

19.
Burke JE  Karbarz MJ  Deems RA  Li S  Woods VL  Dennis EA 《Biochemistry》2008,47(24):6451-6459
Deuterium exchange mass spectrometric evaluation of the cobra venom (Naja naja naja) group IA phospholipase A 2 (GIA PLA 2) was carried out in the presence of metal ions Ca (2+) and Ba (2+) and phospholipid vesicles. Novel conditions for digesting highly disulfide bonded proteins and a methodology for studying protein-lipid interactions using deuterium exchange have been developed. The enzyme exhibits unexpectedly slow rates of exchange in the two large alpha-helices of residues 43-53 and 89-101, which suggests that these alpha-helices are highly rigidified by the four disulfide bonds in this region. The binding of Ca (2+) or Ba (2+) ions decreased the deuterium exchange rates for five regions of the protein (residues 24-27, 29-40, 43-53, 103-110, and 111-114). The magnitude of the changes was the same for both ions with the exception of regions of residues 24-27 and 103-110 which showed greater changes for Ca (2+). The crystal structure of the N. naja naja GIA PLA 2 contains a single Ca (2+) bound in the catalytic site, but the crystal structures of related PLA 2s contain a second Ca (2+) binding site. The deuterium exchange studies reported here clearly show that in solution the GIA PLA 2 does in fact bind two Ca (2+) ions. With dimyristoylphosphatidylcholine (DMPC) phospholipid vesicles with 100 microM Ca (2+) present at 0 degrees C, significant areas on the i-face of the enzyme showed decreases in the rate of exchange. These areas included regions of residues 3-8, 18-21, and 56-64 which include Tyr-3, Trp-61, Tyr-63, and Phe-64 proposed to penetrate the membrane surface. These regions also contained Phe-5 and Trp-19, proposed to bind the fatty acyl tails of substrate.  相似文献   

20.
Sumandea M  Das S  Sumandea C  Cho W 《Biochemistry》1999,38(49):16290-16297
Acidic phospholipase A2 (PLA2) from the venom of Chinese cobra (Naja naja atra) has high activity on zwitterionic membranes and contains six aromatic residues, including Tyr-3, Trp-18, Trp-19, Trp-61, Phe-64, and Tyr-110, on its putative interfacial binding surface. To assess the roles of these aromatic residues in the interfacial catalysis of N. n. atra PLA2, we mutated them to Ala and measured the effects on its interfacial catalysis. Enzymatic activities of the mutants toward various vesicle substrates and human neutrophils indicate that all but Trp-18 make significant contributions to interfacial catalysis. Among these aromatic residues, Trp-19, Trp-61, and Phe-64 play the most important roles. Binding affinities of the mutants for phospholipid-coated beads and their monolayer penetration indicate that Trp-19, Trp-61, and Phe-64 are critically involved in interfacial binding of N. n. atra PLA2 and penetrate into the membrane during the interfacial catalysis of N. n. atra PLA2. Further thermodynamic analysis suggests that the side chain of Phe-64 is fully inserted into the hydrophobic core of membrane whereas those of Trp-19 and Trp-61 are located in the membrane-water interface. Together, these results show that all three types of aromatic residues can play important roles in interfacial binding of PLA2 depending on their location and side-chain orientation. They also indicate that these aromatic side chains interact with membranes in distinct modes because of their different intrinsic preference for different parts of membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号