首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diacylglycerol kinase (DGK) plays a key role in pathophysiological cellular responses by regulating the levels of a lipid messenger diacylglycerol. Of DGK isozymes, DGKζ localizes to the nucleus in various cells such as neurons. We previously reported that DGKζ translocates from the nucleus to the cytoplasm in hippocampal CA1 pyramidal neurons after 20 min of transient forebrain ischemia. In this study, we examined the underlying mechanism of DGKζ translocation using hippocampal slices exposed to oxygen-glucose deprivation (OGD) to simulate an ischemic model of the brain. DGKζ-immunoreactivity gradually changed from the nucleus to the cytoplasm in CA1 pyramidal neurons after 20 min of OGD and was never detected in the nucleus after reoxygenation. Intriguingly, DGKζ was detected in the nucleus at 10 min OGD whereas the following 60 min reoxygenation induced complete cytoplasmic translocation of DGKζ. Morphometric analysis revealed that DGKζ cytoplasmic translocation correlated with nuclear shrinkage indicative of an early process of neuronal degeneration. The translocation under OGD conditions was blocked by NMDA receptor (NMDAR) inhibitor, and was induced by activation of NMDAR. Chelation of the extracellular Ca2+ blocked the translocation under OGD conditions. These results show that DGKζ cytoplasmic translocation is triggered by activation of NMDAR with subsequent extracellular Ca2+ influx. Furthermore, inhibition of PKC activity under OGD conditions led to nuclear retention of DGKζ in about one-third of the neurons, suggesting that PKC activity partially regulates DGKζ cytoplasmic translocation. These findings provide clues to guide further investigation of glutamate excitotoxicity mechanisms in hippocampal neurons.  相似文献   

2.
3.
Recent studies have revealed that phosphoinositide (PI) signaling molecules are expressed in mammalian retinas, suggesting their importance in its signal transduction. We previously showed that diacylglycerol kinase (DGK) isozymes are expressed in distinct patterns in rat retina at the mRNA level. However, little is known about the nature and morphological aspects of DGKs in the retina. For this study, we performed immunohistochemical analyses to investigate in the retina the expression and localization of DGK isozymes at the protein level. Here, we show that both DGKβ and DGKι localize in the outer plexiform layer, within which photoreceptor cells make contact with bipolar and horizontal cells. These isozymes exhibit distinct subcellular localization patterns: DGKι localizes to the synaptic area of bipolar cells in a punctate manner, whereas DGKβ distributes diffusely in the subsynaptic and dendritic regions of bipolar and horizontal cells. However, punctate labeling for DGKϵ is evident in the outer limiting membrane. DGKζ and DGKα localize predominantly to the nucleus of ganglion cells. These findings show distinct expression and localization of DGK isozymes in the retina, suggesting a different role of each isozyme.  相似文献   

4.
Diacylglycerol kinase (DGK) plays a pivotal role in cellular signal transduction through regulating levels of the second messenger diacylglycerol (DG). Previous studies have revealed that DGK is composed of a family of isozymes that show remarkable heterogeneity in terms of molecular structure, functional domains, tissue and cellular gene expression. Recently, it has been shown that DG is produced in various subcellular compartments including the plasma membrane, internal membranes, cytoskeleton, and nucleus. However, it remains unclear how DG is regulated at distinct subcellular sites. To address this point, we have used an epitope-tag expression system in cultured cells and investigated the subcellular localization of DGK isozymes under the same experimental conditions. We show here that DGK isozymes are targeted differentially to unique subcellular sites in transfected COS7 cells, including the cytoplasm, actin stress fibers, Golgi complex, endoplasmic reticulum, and nucleus. It is also shown that among the isozymes overexpression of DGKbeta causes fragmentation of actin stress fibers while a kinase-dead mutant of DGKbeta abolishes its colocalization with actin stress fibers. These data strongly suggest that each isozyme may be responsible for the metabolism of DG that is produced upon stimulation at a different and specific subcellular site and that DGKbeta activity might have effects on the reorganization of actin stress fibers in transfected COS7 cells.  相似文献   

5.
Female reproductive organs show remarkable cyclic changes in morphology and function in response to a combination of hormones. Evidence has accumulated suggesting that phosphoinositide turnover and the consequent diacylglycerol (DG) protein kinase C (PKC) pathway are intimately involved in these mechanisms. The present study has been performed to investigate the gene expression, cellular localization, and enzymatic activity of the DG kinase (DGK) isozymes that control the DG-PKC pathway. Gene expression for DGK, -, -, and - was detected in the ovary and placenta. Intense expression signals for DGK and - were observed in the theca cells and moderate signals in the interstitium and corpora lutea of the ovary. On the other hand, signals for DGK were seen more intensely in granulosa cells. In the placenta, signals for DGK and - were observed in the junctional zone, whereas those for DGK were detected in the labyrinthine zone. At higher magnification, the signals for DGK were mainly discerned in giant cytotrophoblasts, and those for DGK were found in small cytotrophoblasts of the junctional zone. DGK signals were observed in all cellular components of the labyrinthine zone, including mesenchyme, trabecular trophoblasts, and cytotrophoblasts. DGK signals were detected in the junctional zone on day 13 and 15 of pregnancy and were diffusely distributed both in the labyrinthine and junctional zones at later stages. The present study reveals distinct patterns of mRNA localization for DGK isozymes in the rat ovary and placenta, suggesting that each isozyme plays a unique role in distinct cell types in these organs.This work was supported by Grants-in-Aids from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Uehara Memorial Foundation, the ONO Medical Research Foundation, the Ciba-Geigy Foundation (Japan) for the Promotion of Science, the Kato Memorial Bioscience Foundation, and the Yamagata Health Support Foundation (to K.G.).  相似文献   

6.

Background

Diacylglycerol (DG) kinase (DGK) phosphorylates DG to produce phosphatidic acid (PA). Of the 10 subtypes of mammalian DGKs, DGKβ is a membrane-localized subtype and abundantly expressed in the cerebral cortex, hippocampus, and caudate-putamen. However, its physiological roles in neurons and higher brain function have not been elucidated.

Methodology/Principal Findings

We, therefore, developed DGKβ KO mice using the Sleeping Beauty transposon system, and found that its long-term potentiation in the hippocampal CA1 region was reduced, causing impairment of cognitive functions including spatial and long-term memories in Y-maze and Morris water-maze tests. The primary cultured hippocampal neurons from KO mice had less branches and spines compared to the wild type. This morphological impairment was rescued by overexpression of DGKβ. In addition, overexpression of DGKβ in SH-SY5Y cells or primary cultured mouse hippocampal neurons resulted in branch- and spine-formation, while a splice variant form of DGKβ, which has kinase activity but loses membrane localization, did not induce branches and spines. In the cells overexpressing DGKβ but not the splice variant form, DGK product, PA, was increased and the substrate, DG, was decreased on the plasma membrane. Importantly, lower spine density and abnormality of PA and DG contents in the CA1 region of the KO mice were confirmed.

Conclusions/Significance

These results demonstrate that membrane-localized DGKβ regulates spine formation by regulation of lipids, contributing to the maintenance of neural networks in synaptic transmission of cognitive processes including memory.  相似文献   

7.
Diacylglycerol (DG) and phosphatidic acid (PA) are generated under various conditions, such as ligand stimulation and several stresses. They serve as second messengers to respond to pathophysiological conditions. DG kinase (DGK) catalyzes DG to produce PA. It is regarded as a regulator of these lipid messengers. Previous studies show that DGKζ, a nuclear isozyme, translocates from the nucleus to the cytoplasm in hippocampal neurons under transient ischemia and never relocates to the nucleus after reperfusion. This study examined whether a similar phenomenon is observed in cardiomyocytes, which represent another type of postmitotic, terminally differentiated cell. We performed immunostaining on ischemic hearts induced by occlusion of the left anterior descending coronary artery and on primary cultured cardiomyocytes under oxygen-glucose deprivation (OGD). In the animal model, 10 min ischemia is sufficient to cause DGKζ to disappear from the nucleus in cardiomyocytes. However, DGKζ is observed again in the nucleus at 10 min following reperfusion after 10 min ischemia, which contrasts sharply with ischemic hippocampal neurons. Similar results were obtained from experiments using primary cultured cardiomyocytes under OGD conditions, except that DGKζ relocates autonomously, if at all, to the nucleus, even under continuous OGD conditions. Results suggest that DGKζ is involved in the acute phase of cellular response to ischemic stress in cardiomyocytes in a similar, but not identical, manner to that of neurons.  相似文献   

8.
Polyclonal antibodies specific for the excitatory amino acid, kainic acid (KA), were raised in rabbits. The antibody recognized KA but did not cross-react with other structurally related amino acids, including glutamate. We used this anti-KA antibody to localize KA immunohistochemically in the KA-producing red alga Digenea simplex. KA immunoreactivity was most dense in the fine cylindrical thallus, which covers the middle to upper part of the alga. The cortical cells, but not the inner layers of the main axis, and cells of the rhizoid were also stained with this antibody. The presence of KA in cells that cover the surface of the alga might reflect its role in chemical defense. At the subcellular level, KA immunoreactivity was most intense in the nucleus, pit plugs, and the electron-dense areas denoted as “granule bodies”, which were found only in the pericentral cells of the thallus. This research was supported by Ministry of Education, Culture, Sports, Science and Technology to R.S. (13660206).  相似文献   

9.
Diacylglycerol kinase (DGK) converts diacylglycerol (DG) to phosphatidic acid, both of which act as second messengers to mediate a variety of cellular mechanisms. Therefore, DGK contributes to the regulation of these messengers in cellular signal transduction. Of DGK isozymes cloned, DGKzeta is characterized by a nuclear localization signal that overlaps with a sequence similar to the myristoylated alanine-rich C-kinase substrate. Previous studies showed that nuclear DG is differentially regulated from plasma membrane DG and that the nuclear DG levels fluctuate in correlation with cell cycle progression, suggesting the importance of nuclear DG in cell cycle control. In this connection, DGKzeta has been shown to localize to the nucleus in fully differentiated cells, such as neurons and lung cells, although it remains elusive how DGK behaves during the cell cycle in proliferating cells. Here we demonstrate that DGKzeta localizes to the nucleus during interphase including G1, S, and G2 phases and is associated with chromatin although it dissociates from condensed chromatin during mitotic phase in NIH3T3 cells. Furthermore, this localization pattern is also observed in proliferating spermatogonia in the testis. These results suggest a reversible association of DGKzeta with histone or its related proteins in cell cycle, plausibly dependent on their post-translational modifications.  相似文献   

10.
The functions of type II diacylglycerol kinase (DGK) δ and -η in the brain are still unclear. As a first step, we investigated the spatial and temporal expression of DGKδ and -η in the brains of mice. DGKδ2, but not DGKδ1, was highly expressed in layers II–VI of the cerebral cortex; CA–CA3 regions and dentate gyrus of hippocampus; mitral cell, glomerular and granule cell layers of the olfactory bulb; and the granule cell layer in the cerebellum in 1- to 32-week-old mice. DGKδ2 was expressed just after birth, and its expression levels dramatically increased from weeks 1 to 4. A substantial amount of DGKη (η1/η2) was detected in layers II–VI of the cerebral cortex, CA1 and CA2 regions and dentate gyrus of the hippocampus, mitral cell and glomerular layers of the olfactory bulb, and Purkinje cells in the cerebellum of 1- to 32-week-old mice. DGKη2 expression reached maximum levels at P5 and decreased by 4 weeks, whereas DGKη1 increased over the same time frame. These results indicate that the expression patterns of DGK isozymes differ from each other and also from other isozymes, and this suggests that DGKδ and -η play distinct and specific roles in the brain.  相似文献   

11.
The liver possesses the capacity to restore its function and mass after injury. Liver regeneration is controlled through complicated mechanisms, in which the phosphoinositide (PI) cycle is shown to be activated in hepatocytes. Using a rat partial hepatectomy (PH) model, the authors investigated the expression of the diacylglycerol kinase (DGK) family, a key enzyme in the PI cycle, which metabolizes a lipid second-messenger diacylglycerol (DG). RT-PCR analysis shows that DGKζ and DGKα are the major isozymes in the liver. Results showed that in the process of regeneration, the DGKζ protein, which is detected in the nucleus of a small population of hepatocytes in normal liver, is significantly increased in almost all hepatocytes. However, the mRNA levels remain largely unchanged. Double labeling with bromodeoxyuridine (BrdU), an S phase marker, reveals that DGKζ is expressed independently of DNA synthesis or cell proliferation. However, DGKα protein localizes to the cytoplasm in normal and regenerating livers, but immunoblot analysis reveals that the expected (80 kDa) and the lower (70 kDa) bands are detected in normal liver, whereas at day 10 after PH, the expected band is solely recognized, showing a different processing pattern of DGKα in liver regeneration. These results suggest that DGKζ and DGKα are involved, respectively, in the nucleus and the cytoplasm of hepatocytes in regenerating liver.  相似文献   

12.
Decreased expression of diacylglycerol (DG) kinase (DGK) δ in skeletal muscles is closely related to the pathogenesis of type 2 diabetes. To identify DG species that are phosphorylated by DGKδ in response to high glucose stimulation, we investigated high glucose-dependent changes in phosphatidic acid (PA) molecular species in mouse C2C12 myoblasts using a newly established liquid chromatography/MS method. We found that the suppression of DGKδ2 expression by DGKδ-specific siRNAs significantly inhibited glucose-dependent increases in 30:0-, 32:0-, and 34:0-PA and moderately attenuated 30:1-, 32:1-, and 34:1-PA. Moreover, overexpression of DGKδ2 also enhanced the production of these PA species. MS/MS analysis revealed that these PA species commonly contain palmitic acid (16:0). D609, an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), significantly inhibited the glucose-stimulated production of the palmitic acid-containing PA species. Moreover, PC-PLC was co-immunoprecipitated with DGKδ2. These results strongly suggest that DGKδ preferably metabolizes palmitic acid-containing DG species supplied from the PC-PLC pathway, but not arachidonic acid (20:4)-containing DG species derived from the phosphatidylinositol turnover, in response to high glucose levels.  相似文献   

13.
The GLW-amide family is a neuropeptide family found in cnidarian species and is characterized by the C-terminal amino acid sequence -Gly-Leu-Trp-NH2. To detect mammalian peptides structurally related to the GLW-amide family, we examined rat brain by immunohistochemistry with an anti-GLW-amide antibody. GLW-amide-like immunoreactivity (GLW-amide-LI) was observed in thin varicose fibers in some regions of the brain. Most neurons showing GLW-amide-LI were observed in the laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus, and trigeminal/spinal ganglia. These results strongly suggest that the rat nervous system contains as yet unidentified GLW-amide-like peptides, and that GLW-amide-LI in the brain is a good marker for ascending projections from mesopontine cholinergic neurons. This work was supported by grants from the Ministry of Education, Sports, and Culture, Japan.  相似文献   

14.
Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction.  相似文献   

15.
Neurotrophin-3 plays an important role in survival and differentiation of sensory and sympathetic neurons, sprouting of neurites, synaptic reorganization, and axonal growth. The present study evaluated changes in expression of NT-3 in the spinal cord and L6 dorsal root ganglion (DRG), after ganglionectomy of adjacent dorsal roots in cats. NT-3 immunoreactivity increased at 3 days post-operation (dpo), but decreased at 10 dpo in spinal lamina II after ganglionectomy of L1–L5 and L7–S2 (leaving L6 DRG intact). Conversely, NT-3 immunoreactivity decreased on 3 dpo, but increased on 10 dpo in the nucleus dorsalis. Very little NT-3 mRNA signal was detected in the spinal cord, despite the changes in NT-3 expression. The above changes may be related to changes in NT-3 expression in the DRG. Ganglionectomy of L1–L5 and L7–S2 resulted in increase in NT-3 immunoreactivity and mRNA in small and medium-sized neurons, but decreased expression in large neurons of L6 DRG at 3 dpo. It is possible that increased NT-3 in spinal lamina II is derived from anterograde transport from small- and medium-sized neurons of L6 DRG, whereas decreased NT-3 immunoreactivity in the nucleus dorsalis is due to decreased transport of NT-3 from large neurons in the DRG at this time. This notion is supported by observations on NT-3 distribution in the dorsal root of L6 after ligation of the nerve root. The above results indicate that DRG may be a source of neurotrophic factors such as NT-3 to the spinal cord, and may contribute to plasticity in the spinal cord after injury.  相似文献   

16.
Versican is a chondroitin sulfate proteoglycan belonging to the lectican family. Versican has two glycosaminoglycan attachment regions, named the GAGα and GAGβ domains, which are both regulated by alternative splicing and yield four protein isoforms. We have investigated the expression and localization of versican in the developing and adult brain by using anti-versican GAGα and GAGβ antibodies. Western analysis revealed that GAGα-reactive isoform was dominant in the adult brain. Immunohistochemical study demonstrated that GAGα immunoreactivity was detectable from neonatal periods to adulthood, whereas GAGβ immunoreactivity completely disappeared within 3 weeks of birth. In the adult brain, GAGα immunoreactivity was seen in the white matter regions and was also localized in the gray matter including somata and dendrites of cortical and hippocampal pyramidal neurons and cerebellar Purkinje cells. In contrast, GAGα immunoreactivity was not localized on parvalbumin-positive interneurons and cerebellar stellate cells. Furthermore, GAGα immunoreactivity was not co-localized with perineuronal net markers such as Wisteria floribunda agglutinin lectin and phosphacan. Thus, versican was localized on large projection neurons rather than small interneurons. To confirm the binding mechanism of versican to neurons, hyaluronan and chondroitin sulfates were enzymatically removed from brain sections before the immunolabeling of versican. These treatments had no effect on the labeling pattern of versican, suggesting that other versican-interactive molecules are involved in the binding of versican to neurons. This study was supported by a Grant-in-Aid for Scientific Research on Priority Areas “Advanced Brain Science Project” from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.  相似文献   

17.
Diacylglycerol kinase (DGK) catalyzes phosphorylation of diacylglycerol to generate phosphatidic acid, and both molecules are known to serve as second messengers as well as important intermediates for the synthesis of various lipids. In this study, we investigated the spatiotemporal expression patterns of DGK isozymes together with the developmental changes of the mRNA expression and enzymatic property in rat lung. Northern blot and RT-PCR analyses showed that mRNAs for DGKalpha, -epsilon, and -zeta were detected in the lung. By immunohistochemical examination, DGKalpha and -zeta were shown to be coexpressed in alveolar type II cells and macrophages. Interestingly, these isozymes were localized at distinct subcellular locations, i.e., DGKalpha in the cytoplasm and DGKzeta in the nucleus, suggesting different roles for these isozymes. In the developing lung, the expression for DGKalpha and -zeta was transiently elevated on embryonic day 21 (E21) to levels approximately two- to threefold higher than on postnatal day 0 (P0). On the other hand, the expression for DGKepsilon was inversely elevated approximately twofold on P0 compared with that on E21. These unique changes in the expression pattern during the perinatal period suggest that each isozyme may play a distinct role in the adaptation of the lung to air or oxygen breathing at birth.  相似文献   

18.
There are ten isozymes of diacylglycerol kinase (DGK), and they regulate diverse patho-physiological functions. Here, we investigated the lipid-binding properties of DGK isozymes using protein–lipid overlay and liposome-binding assays. DGKγ showed a strong binding activity compared with other DGK isozymes for phosphatidic acid (PA) among the various glycerophospholipids tested. However, DGKγ failed to interact with DG and lyso-PA. Moreover, the isozyme was capable of binding to ceramide-1-phosphate but not to ceramide or sphingosine-1-phosphate. The isozyme bound more strongly to PA containing unsaturated fatty acid than to PA having only saturated fatty acid. An analysis using a series of deletion mutants of DGKγ revealed that the N-terminal region, which contains a recoverin homology domain and EF-hand motifs, is responsible for the PA binding activity of DGKγ. Taken together, these results indicate that DGKγ is an anionic phospholipid binding protein that preferably interacts with a small highly charged head group that is very close to the glycerol or sphingosine backbone.  相似文献   

19.
Olfactory sensory neurons are wrapped by ensheathing glial cells in the olfactory nerve layer (ONL). Neither functional roles nor electrical properties of ensheathing glial cells have been, as yet, fully clarified. Four subunits (SK1–4) of small conductance Ca2+-activated K+ (SK) channels have been cloned. In the present study, immunohistochemical analyses showed that SK3 channels are expressed in ensheathing glial cells in the rat olfactory bulb, in addition to neuronal cells in other regions. Western blotting analysis demonstrated that SK3 was predominantly expressed in the olfactory bulb, thalamus, moderately in the hippocampus and cerebellum and modestly in the cerebral cortex of the rat brain. SK3 immunoreactivity was detected in the ONL of the olfactory bulb, neural cell body and fibers of the substantia nigra and hypothalamus. SK3 immunoreactivity was quite intense in the outer (superficial) part of the ONL. SK3-immunoreactive structures were overlapped with glial fibrillary acidic protein (GFAP), but not with vimentin, markers for glial cells and olfactory sensory axons, respectively. Immunoelectron microscopy showed that SK3 immunoreactivity was localized in thin processes that enfolded fascicles of immunonegative olfactory nerve axons. These results indicate that SK3 is expressed specifically in the olfactory ensheathing glial cells in olfactory regions.This work was supported in part by a Grant-in-Aid to A.F. for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, and by scholarship from Ono Pharmaceutical Company, and by Narishige Neuroscience Research Foundation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号