首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malaria and human African trypanosomiasis represent the two major tropical vector-transmitted protozoan infections, displaying different prevalence and epidemiological patterns. Death occurs mainly due to neurological complications which are initiated at the blood-brain barrier level. Adapted host-immune responses present differences but also similarities in blood-brain barrier/parasite interactions for these diseases: these are the focus of this review. We describe and compare parasite evasion mechanisms, the initiating mechanisms of central nervous system pathology and major clinical and neuropathological features. Finally, we highlight the common immune mediated mechanisms leading to brain involvement. In both diseases neurological damage is caused mainly by cytokines (interferon-gamma, tumour necrosis factor-alpha and IL-10), nitric oxide and endothelial cell apoptosis. Such a comparative analysis is expected to be useful in the comprehension of disease mechanisms, which may in turn have implications for treatment strategies.  相似文献   

2.
3.
Merozoite surface protein 1 (MSP1) has been identified as a target antigen for protective immune responses against asexual blood stage malaria, but effective vaccines based on MSP1 have not been developed so far. We have modified the sequence of Plasmodium yoelii MSP119 (the C-terminal region of the molecule) and examined the ability of the variant proteins to bind protective monoclonal antibodies and to induce protection by immunization. In parallel, we examined the structure of the protein and the consequences of the amino acid changes. Naturally occurring sequence polymorphisms reduced the binding of individual protective antibodies, indicating that they contribute to immune evasion, but immunization with these variant proteins still provided protective immunity. One variant that resulted in the localized distortion of a loop close to the N-terminus of MSP119 almost completely ablated protection by immunization, indicating the importance of this region of MSP119 as a target for protective immunity and in vaccine development.  相似文献   

4.
The situation of human African trypanosomiasis (sleeping sickness) is poorly known in Gabon. Most of the historical foci have not been investigated for more than 15 years. Few cases are passively recorded from the historical focus of Bendjé; they involved mainly fishermen but determining their contamination site is difficult because of their mobility due to their activity. The presence of these cases in that focus could favour its reactivation if the vector is still there. In order to assess a potential transmission risk in that area, an entomological survey has been carried out in it. Traps were set up during four days in different habitats used by humans during their daily activities. Three species of tsetse flies (Glossina palpalis palpalis, G. pallicera newsteadi and G. caliginea) were caught and two species of trypanosomes (Trypanosoma vivax and T. brucei s.l.) were identified by PCR. These results suggest the presence of an animal transmission cycle. Human-flies contact was confirmed in all type of habitats but no transmission was quantified in the mangrove.  相似文献   

5.
Treatment of late-stage human African trypanosomiasis is complicated by the presence of trypanosomes within the central nervous system (CNS). The regimen commonly prescribed to treat CNS-stage disease involves the use of the trypanocidal drugs suramin and melarsoprol. Suramin does not cross the blood–brain barrier efficiently and therefore, at normal dosages, will not cure CNS-stage infections. An initial treatment with suramin is given to eliminate the parasites from the peripheral tissues. This is followed by a course of intravenous melarsoprol, which can enter the CNS. However, melarsoprol not only produces severe adverse reactions but also is extremely painful to administer. One possible method to help alleviate these problems is to reduce the total amount of melarsoprol in the treatment regimen. This study indicates a synergism between suramin and melarsoprol and demonstrates that experimental murine CNS-trypanosomiasis can be cured with a single intraperitoneal dose of 20 mg/kg suramin followed almost immediately by 0.05 ml (4.5 μmol) topical melarsoprol. These dosages will not cure the infection when administered as monotherapies. Moreover, the timing of the drug administration appears to be crucial to the successful outcome of the regimen. If the interval between injection of suramin and application of topical melarsoprol is extended from 15 min to 3 or 7 days, the infections are not cured. Although extended relapse times occur following these regimens when compared with monotherapy approaches. Thus, there is strong evidence that injected suramin and topical melarsoprol should be given almost simultaneously to achieve the most effective combination of the two drugs.  相似文献   

6.
Strain variation in the level of resistance to malaria was investigated in inbred mice after infection with Plasmodium chabaudi. Following intraperitoneal infection with the typing dose of parasitized erythrocytes, mice of 11 inbred strains could be separated using survival time as the criterium into resistant and susceptible groups. Genetic analysis of F1 hybrid and backcross progeny derived from one of the most resistant (B10.A) and from the most susceptible (A/J) strains as parents suggested that host resistance in this strain combination was genetically controlled by a dominant, non-H-2-linked, autosomal gene or closely linked genes. Analysis of the mechanisms of resistance to P chabaudi showed (1) phenotypic expression of the resistance gene was apparent within 6 days of infection as a significant difference between resistant and susceptible mice in the level of parasitemia; (2) the level of host NK cell activity was not related to the level of host resistance to malaria; (3) compared with susceptible A/J mice, resistant B1O.A hosts had an augmented erythropoietic response during the course of malaria as well as during phenylhydrazine-induced anemia and (4) treatment with BCG or P acnes resulted in an equal degree of protection, measured by parasitemia and survival, in both resistant and susceptible mice.  相似文献   

7.
Drug therapy for late-stage (encephalitic) human African trypanosomiasis (HAT) is currently very unsatisfactory with the most commonly used drug, melarsoprol, having a 5% overall mortality. There is evidence in a mouse model of HAT that Substance P (SP) receptor antagonism reduces the neuroinflammatory reaction to CNS trypanosome infection. In this study we investigated the effects of combination chemotherapy with melarsoprol and a humanised SP receptor antagonist aprepitant (EMEND) in this mouse model. The melarsoprol/aprepitant drug combination did not produce any clinical signs of illness in mice with CNS trypanosome infection. This lack of any additional or unexpected CNS toxicity in the mouse model of CNS HAT provides valuable safety data for the future possible use of this drug combination in patients with late-stage HAT.  相似文献   

8.
The long-term patterns of malaria in the East African highlands typically involve not only a general upward trend in cases but also a dramatic increase in the size of epidemic outbreaks. The role of climate variability in driving epidemic cycles at interannual time scales remains controversial, in part because it has been seen as conflicting with the alternative explanation of purely endogenous cycles exclusively generated by the nonlinear dynamics of the disease. We analyse a long temporal record of monthly cases from 1970 to 2003 in a highland of western Kenya with both a time-series epidemiological model (time-series susceptible-infected-recovered) and a statistical approach specifically developed for non-stationary patterns. Results show that multiyear cycles of malaria outbreaks appear in the 1980s, concomitant with the timing of a regime shift in the dynamics of cases; the cycles become more pronounced in the 1990s, when the coupling between disease and rainfall is also stronger as the variance of rainfall increased at the frequencies of coupling. Disease dynamics and climate forcing play complementary and interacting roles at different temporal scales. Thus, these mechanisms should not be viewed as alternative and their interaction needs to be integrated in the development of future predictive models.  相似文献   

9.
10.
In human African trypanosomiasis, trypanosomes first develop in the blood and lymph (Stage 1), then spread to the central nervous system (CNS) (Stage 2). Disruption of the blood-brain barrier of unknown mechanism occurs in Stage 2 disease. The hypothesis that cerebrospinal fluids (CSF) from African trypanosomiasis patients might contain factor(s) able to induce apoptosis in endothelial cells led us to evaluate this effect by two methods, the TdT-mediated dUTP nick end labelling (TUNEL) method and the measurement of soluble nucleosomes released by apoptotic cells in culture supernatant by ELISA. Apoptosis induction by CSF was also studied with microglial cells, the resident macrophages in the brain, which participate in the blood-brain barrier in the perivascular area. In contrast with control CSF, African trypanosomiasis patients' CSF induced apoptosis in both microglial and endothelial cells. The results obtained with the two methods correlated well, and showed that Stage 2 CSF induced apoptosis at higher levels in microglial cells, whereas the disease stage was not decisive for apoptosis induction in endothelial cells. We measured soluble Fas ligand (sFasL) and anti-Fas antibodies levels, two potent inducers of the Fas signalling pathway leading to apoptosis, in CSF from African trypanosomiasis patients and controls. CSF from African trypanosomiasis patients contained sFasL, and anti-Fas antibodies at higher levels than in controls. Stage 2 CSF contained more sFasL than Stage 1 CSF, and anti-Fas antibodies were detected only in Stage 2 CSF. Caspase-8 inhibitor effect and statistical data suggest that other pro-apoptotic factors may be involved in some CSF-induced apoptosis. Apoptosis induction may participate in the pathogenesis during African trypanosomiasis, and the presence of sFasL and anti-Fas antibodies may provide new tools for diagnosis and prognosis of the disease.  相似文献   

11.
Malaria eradication involves eliminating malaria from every country where transmission occurs. Current theory suggests that the post-elimination challenges of remaining malaria-free by stopping transmission from imported malaria will have onerous operational and financial requirements. Although resurgent malaria has occurred in a majority of countries that tried but failed to eliminate malaria, a review of resurgence in countries that successfully eliminated finds only four such failures out of 50 successful programmes. Data documenting malaria importation and onwards transmission in these countries suggests malaria transmission potential has declined by more than 50-fold (i.e. more than 98%) since before elimination. These outcomes suggest that elimination is a surprisingly stable state. Elimination''s ‘stickiness’ must be explained either by eliminating countries starting off qualitatively different from non-eliminating countries or becoming different once elimination was achieved. Countries that successfully eliminated were wealthier and had lower baseline endemicity than those that were unsuccessful, but our analysis shows that those same variables were at best incomplete predictors of the patterns of resurgence. Stability is reinforced by the loss of immunity to disease and by the health system''s increasing capacity to control malaria transmission after elimination through routine treatment of cases with antimalarial drugs supplemented by malaria outbreak control. Human travel patterns reinforce these patterns; as malaria recedes, fewer people carry malaria from remote endemic areas to remote areas where transmission potential remains high. Establishment of an international resource with backup capacity to control large outbreaks can make elimination stickier, increase the incentives for countries to eliminate, and ensure steady progress towards global eradication. Although available evidence supports malaria elimination''s stickiness at moderate-to-low transmission in areas with well-developed health systems, it is not yet clear if such patterns will hold in all areas. The sticky endpoint changes the projected costs of maintaining elimination and makes it substantially more attractive for countries acting alone, and it makes spatially progressive elimination a sensible strategy for a malaria eradication endgame.  相似文献   

12.
Anopheles funestus is a primary vector of malaria in Africa south of the Sahara. We assessed its rangewide population genetic structure based on samples from 11 countries, using 10 physically mapped microsatellite loci, two per autosome arm and the X (N = 548), and 834 bp of the mitochondrial ND5 gene (N = 470). On the basis of microsatellite allele frequencies, we found three subdivisions: eastern (coastal Tanzania, Malawi, Mozambique and Madagascar), western (Burkina Faso, Mali, Nigeria and western Kenya), and central (Gabon, coastal Angola). A. funestus from the southwest of Uganda had affinities to all three subdivisions. Mitochondrial DNA (mtDNA) corroborated this structure, although mtDNA gene trees showed less resolution. The eastern subdivision had significantly lower diversity, similar to the pattern found in the codistributed malaria vector Anopheles gambiae. This suggests that both species have responded to common geographic and/or climatic constraints. The western division showed signatures of population expansion encompassing Kenya west of the Rift Valley through Burkina Faso and Mali. This pattern also bears similarity to A. gambiae, and may reflect a common response to expanding human populations following the development of agriculture. Due to the presumed recent population expansion, the correlation between genetic and geographic distance was weak. Mitochondrial DNA revealed further cryptic subdivision in A. funestus, not detected in the nuclear genome. Mozambique and Madagascar samples contained two mtDNA lineages, designated clade I and clade II, that were separated by two fixed differences and an average of 2% divergence, which implies that they have evolved independently for approximately 1 million years. Clade I was found in all 11 locations, whereas clade II was sampled only on Madagascar and Mozambique. We suggest that the latter clade may represent mtDNA capture by A. funestus, resulting from historical gene flow either among previously isolated and divergent populations or with a related species.  相似文献   

13.
Cerebral malaria is an infrequent but serious complication of Plasmodium falciparum infection in humans. Co-infection with different Plasmodium species is common in endemic areas and the existence of benign malaria parasites, such as Plasmodium vivax, during P. falciparum infection has been considered to reduce the risk of developing pathogenesis. However, it is still unknown how disease severity is reduced in the host during co-infection. In the present study, we investigated the influence of co-infection with non-lethal malaria parasites, Plasmodium berghei (Pb) XAT strain, on the outcome of Pb ANKA strain infection which causes experimental cerebral malaria (ECM) in mice. The co-infection with non-lethal Pb XAT suppressed ECM caused by Pb ANKA infection and prolonged survival of mice. The production of TNF-α and IFN-γ, which had been shown to be involved in development of ECM, was suppressed in co-infected mice early in infection. The suppression of ECM by co-infection with Pb XAT was abrogated in IL-10-deficient mice. IL-10 plays a crucial role in the suppression of ECM by co-infection with non-lethal malaria parasites, probably due to its suppressive effect on the induction of TNF-α and IFN-γ. Co-infection with Pb XAT and Pb ANKA is a useful model for understanding how ECM is suppressed.  相似文献   

14.
Many malaria vector mosquitoes in Africa have an extreme preference for feeding on humans. This specialization allows them to sustain much higher levels of transmission than elsewhere, but there is little understanding of the evolutionary forces that drive this behaviour. In Tanzania, we used a semi-field system to test whether the well-documented preferences of the vectors, Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.) for cattle and humans, respectively, are predicted by the fitness they obtain from host-seeking on these species relative to other available hosts. Mosquito fitness was contrasted, when humans were fully exposed and when they were protected by a typical bednet. The fitness of both vectors varied between host species. The predicted relationship between host preference and fitness was confirmed in An. arabiensis, but not in An. gambiae s.s., whose fitness was similar on humans and other mammals. Use of typical, imperfect bednets generated only minor reductions in An. gambiae s.s. feeding success and fitness on humans, but was predicted to generate a significant reduction in the lifetime reproductive success of An. arabiensis on humans relative to cows. This supports the hypothesis that such human-protective measures could additionally benefit malaria control by increasing selection for zoophily in vectors.  相似文献   

15.
16.
We developed microsatellite markers for an important African malaria mosquito Anopheles funestus Giles. The microsatellite‐enriched genomic library was constructed and screened with single‐strand oligonucleotides [(CCT)17, (AAT)17, (CAG)17 and (GA)25] as probes. Among the 47 pairs of polymerase chain reaction primers screened, 31 produced successful and consistent amplification. Although only a few A. funestus individuals from one geographical location were used to screen microsatellite marker polymorphism, 27 markers were found polymorphic and four markers monomorphic. Most polymorphic markers are trinucleotide markers. Isolation of polymorphic microsatellite markers provide useful tools for A. funestus population genetic studies and genome mapping.  相似文献   

17.
Brain lesions of cerebral malaria (CM) are characterised by a sequestration of Plasmodium falciparum-parasitised red blood cells (PRBC), leucocytes and platelets within brain microvessels, by an excessive release of pro-inflammatory cytokines as well as by disruption of the blood-brain barrier (BBB). We evaluated the possibility that PRBC and platelets interact and induce functional alterations in brain endothelium. Using an in vitro model of endothelial lesion, we showed that platelets can act as bridges between PRBC and endothelial cells (EC) allowing the binding of PRBC to endothelium devoid of cytoadherence receptors. Furthermore, platelets potentiated the cytotoxicity of PRBC for brain EC by inducing an alteration of the integrity of their monolayer and increasing their apoptosis. These findings provide insights into the mechanisms by which platelets can be deleterious to the brain endothelium during CM. Another aspect of inflammatory and infectious diseases is that they often lead to activation of vascular and blood cells. Such activation results in an enhanced vesiculation, i.e. the release of circulating microparticles (MP). We thus explored plasma levels of endothelial MP in Malawian children with malaria. Plasma MP numbers were markedly increased on admission only in patients with severe malaria complicated with coma. Using the experimental mouse model of CM, we evaluated the pathogenic implications of MP using genetically deficient mice in which the capacity to vesiculate is impaired. Such mice, lacking the ABCA-1 gene, upon infection by Plasmodium berghei ANKA, showed complete resistance to CM. When purified from infected susceptible animals, MP were able to reduce normal plasma clotting time and to significantly enhance tumour necrosis factor release from na?ve macrophages. Altogether these data provide a novel insight into the pathogenic mechanisms leading to the neurological syndrome. The finding that ABCA-1 gene deletion confers complete protection against cerebral pathology, linked to an impaired MP production, provides new potential targets for therapeutic amelioration of severe malaria.  相似文献   

18.
The prevalence of bovine tuberculosis (BTB) in the UK remains a significant economic burden and problem for the agri-food industry. Much effort has been directed towards improving diagnostics, finding vaccine candidates and assessing the usefulness of badger culling. The contribution that host genotype makes to disease outcome has, until recently, been overlooked; yet, it is biologically untenable that genetic variation does not play a role. In this review, we highlight the evidence, past and present, for a role of host genetics in determining susceptibility to BTB in livestock. We then address some of the major issues surrounding the design of future studies tasked with finding the exact causative genetic variation underpinning the TB susceptibility phenotype. Finally, we discuss some of the potential future benefits, and problems, that a knowledge of the genetic component to BTB resistance/susceptibility may bring to the agricultural industries and the wider scientific community.  相似文献   

19.
Alterations in the permeability of erythrocytes from mice infected with the malaria parasite Plasmodium berghei were demonstrated with l-14C-glucose. This sugar rapidly entered erythrocytes from infected mice but not those from normal mice. The results obtained were not due to contamination either by white cells, which were removed beforehand, or by immature cells, as judged by comparable investigations on blood from phenylhydrazine treated mice. Uptake was proportional to the concentration in the suspending medium, and was affected neither by relatively high concentrations of d-glucose nor by N-ethyl maleimide, and this suggests that the rapid uptake was due to an increased rate of diffusion through the membrane of the erythrocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号