首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper ions are known to inactivate a variety of enzymes, and lactate dehydrogenase (LDH) is exceptionally sensitive to the presence of this metal. We now found that NADH strongly enhances the Cu(II)-mediated loss of LDH activity. Surprisingly, NADH was not oxidized in this process and also NAD+ promoted the Cu(II)-dependent inactivation of LDH. Catalase only partly protected the enzyme, whereas hypoxia even enhanced LDH inactivation. NAD(H) accelerated sulfhydryl (SH) group oxidation of LDH by 5,5-dithio-bis(2-nitrobenzoic acid) (DTNB), and, vice versa, LDH-mediated Cu(II) reduction. LDH activity was preserved by thiol donators and pyruvate and partially preserved by lactate and oxamate. Our results suggest that reactive oxygen species (ROS) are of minor importance for the inactivation of LDH induced by Cu(II)/NADH. We propose that conformational changes of the enzymes' active sites induced by NAD(H)-binding increase the accessibility of active sites' cysteine residues to Cu(II) thereby accelerating their oxidation and, consequently, loss of catalytic activity.  相似文献   

2.
Biochemical characterization and kinetic analysis of epsilon-crystallin from the lenses of common ducks were undertaken to elucidate the enzyme mechanism of this unique crystallin with lactate dehydrogenase (LDH) activity. Despite the structural similarities between epsilon-crystallin and chicken heart LDH, differences in charge and kinetic properties were revealed by isoenzyme electrophoresis and kinetic studies. Bi-substrate kinetic analysis examined by initial-velocity and product-inhibition studies suggested a compulsory ordered Bi Bi sequential mechanism with NADH as the leading substrate followed by pyruvate. The products were released in the order L-lactate and NAD+. The catalysed reaction is shown to have a higher rate in the formation of L-lactate and NAD+. Substrate inhibition was observed at high concentrations of pyruvate and L-lactate for the forward and reverse reactions respectively. The substrate inhibition was presumably due to the formation of epsilon-crystallin-NAD(+)-pyruvate or epsilon-crystallin-NADH-L-lactate abortive ternary complexes, as suggested by the product-inhibition studies. The significance and the interrelationship of duck epsilon-crystallin with other well-known LDHs are discussed with special regard to its role as a structural protein with some enzymic function in lens metabolism.  相似文献   

3.
NADP-dependent malate dehydrogenase was rapidly inactivated in the presence of mercurous chloride. Titration of malate dehydrogenase by 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) in a solution of 8 M urea revealed 18 SH groups per molecule of the enzyme. Eight sulphydryl groups reacted with DTNB in native malate dehydrogenase and their modification was not accompanied by a loss of the enzyme activity. The interaction of p-chloromercury benzoate (PCMB) with malate dehydrogenase resulted in a 70% decrease in the enzyme activity. The binding of the thiol reagents by the malate dehydrogenase molecule appreciably increased the Michaelis constant value for the substrate. In the presence of magnesium ions, NADP and malate did not affect the process of malate dehydrogenase modification by DTNB and did not protect the enzyme from the inactivation by PCMB. It is suggested from the data obtained that the sulphyryl groups are involved in maintaining the active conformation of the enzyme.  相似文献   

4.
Porcine liver aminopeptidase was inactivated by various sulfhydryl-reactive reagents, whose inactivation rates were in the order: p-chloromercuribenzoate(PCMB) greater than HgCl2 greater than 2,2'-dithiodipyridine greater than 5,5'-dithiobis(2-nitrobenzoic acid)(DTNB). The processes of inactivation by these reagents did not follow pseudo-first-order kinetics, and prolonged incubation did not alter the level of maximum inactivation. The substrates provided no protection against the inactivation by DTNB, and the numbers of sulfhydryl groups titrated with the reagent were not influenced by the presence or absence of puromycin (a competitive inhibitor). The modification of sulfhydryl groups caused a slight increase in the Km value for the enzyme and a significant decrease of the Vmax value. There are two ionizable groups (pKe, 6.2; 7.8 and pKes, 6.0; 7.8) in the catalytic action of the enzyme. From the pKi vs. pH profile of inhibition with PCMB, the pK value of 7.8 does not correspond to the ionization of a sulfhydryl group. The thiol-modified enzyme was activated by cobalt ion, as was the native enzyme (Kawata, S., et al. (1982) J. Biochem. 92, 1093-1101). But in contrast with the native enzyme, the thiol-modified enzyme was activated about 2.5-fold and the maximum activation remained almost constant during prolonged incubation with cobalt ion. These results suggest that the sulfhydryl groups of the enzyme are located apart from the binding site of cobalt ion and do not participate directly in the catalytic process.  相似文献   

5.
Initial velocity, product inhibition, and substrate inhibition studies suggest that the endogenous lactate dehydrogenase activity of duck epsilon-crystallin follows an order Bi-Bi sequential mechanism. In the forward reaction (pyruvate reduction), substrate inhibition by pyruvate was uncompetitive with inhibition constant of 6.7 +/- 1.7 mM. In the reverse reaction (lactate oxidation), substrate inhibition by L-lactate was uncompetitive with inhibition constant of 158 +/- 25 mM. The cause of these inhibitions may be due to epsilon-crystallin-NAD(+)-pyruvate and epsilon-crystallin-NADH-L-lactate abortive ternary complex formation as suggested by the multiple inhibition studies. Pyruvate binds to free enzyme very poorly, with a very large dissociation constant. Bromopyruvate, fluoropyruvate, pyruvate methyl ester, and pyruvate ethyl ester are alternative substrates for pyruvate. 3-Acetylpyridine adenine dinucleotide, nicotinamide 1,N6-ethenoadenine dinucleotide, and nicotinamide hypoxanthine dinucleotide serve as alternative coenzymes for epsilon-crystallin. All the above alternative substrates or coenzymes showed an intersecting initial-velocity pattern conforming to the order Bi--Bi kinetic mechanism. Nicotinic acid adenine dinucleotide, thionicotinamide adenine dinucleotide, and 3-aminopyridine adenine dinucleotide acted as inhibitors for this enzymatic crystallin. The inhibitors were competitive versus NAD+ and noncompetitive versus L-lactate. alpha-NAD+ was a noncompetitive inhibitor with respect to the usual beta-NAD+. D-Lactate, tartronate, and oxamate were strong dead-end inhibitors for the lactate dehydrogenase activity of epsilon-crystallin. Both D-lactate and tartronate were competitive inhibitors versus L-lactate while oxamate was a competitive inhibitor versus pyruvate. We conclude that the structural requirements for the substrate and coenzyme of epsilon-crystallin are similar to those of other dehydrogenases and that the carboxamide carbonyl group of the nicotinamide moiety is important for the coenzyme activity.  相似文献   

6.
An extramitochondrial acetyl-CoA hydrolase (EC 3.1.2.1) purified from rat liver was inactivated by heavy metal cations (Hg2+, Cu2+, Cd2+ and Zn2+), which are known to be highly reactive with sulfhydryl groups. Their order of potency for enzyme inactivation was Hg2+ greater than Cu2+ greater than Cd2+ greater than Zn2+. This enzyme was also inactivated by various sulfhydryl-blocking reagents such as p-hydroxymercuribenzoate (PHMB), N-ethylmaleimide (NEM), 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), and iodoacetate (IAA). DL-Dithiothreitol (DTT) reversed the inactivation of this enzyme by DTNB markedly, and that by PHMB slightly, but did not reverse the inactivations by NEM, DTNB and IAA. Benzoyl-CoA (a substrate-like competitive inhibitor) and ATP (an activator) greatly protected acetyl-CoA hydrolase from inactivation by PHMB, NEM, DTNB and IAA. These results suggest that the essential sulfhydryl groups are on or near the substrate binding site and nucleotide binding site. The enzyme contained about four sulfhydryl groups per mol of monomer, as estimated with DTNB. When the enzyme was denatured by 4 M guanidine-HCl, about seven sulfhydryl groups per mol of monomer reacted with DTNB. Two of the four sulfhydryl groups of the subunit of the native enzyme reacted with DTNB first without any significant inactivation of the enzyme, but its subsequent reaction with the other two sulfhydryl groups seemed to be involved in the inactivation process.  相似文献   

7.
OPTA对乳酸脱氢酶的抑制动力学   总被引:1,自引:0,他引:1  
邹承鲁建立的酶活性不可逆改变动力学理论已为实验所验证,它不仅适用于单底物酶的抑制和激活的动力学研究,而且也适用于双底物酶反应系统.但在双底物酶反应系统中,底物和酶的结合方式有四种机制,即随机机制、有序机制、强制有序机制和乒乓机制,迄今为止这一动力学方法仅对随机机制的肌酸激酶进行了实验研究.而其它机制的实验研究尚未见诸报道.我们选用了有序机制的乳酸脱氢酶(LDH),用邻苯二甲醛(OPTA)为抑制剂对该酶的抑制过程进行了实验研究.结果表明,OPTA对该酶的抑制为不可逆抑制.其产物生成与时间的关系曲线符合邹氏方程:[P]=[P]_x(1-e~(-A[OPTA]).由ln([P]_x-[P])对t作图为一直线,表明它的抑制作用为单相动力学过程,抑制剂与酶的结合为一步反应.由直线的斜率A[OPTA]对[OPTA]作图为一过原点的直线.说明表观速度常数A与OPTA的浓度无关.OPTA与酶的结合为非络合型.测得的OPTA与EE-NADH结合的微观速度常数分别为:K(?)=49.6(mmol L)~(-1)min,(?)=2.31(mmol L)min~(-1)(?).明显小于(?)的事实表明.NADH对失活有明显的保护作用.OPTA是一个竞争性的不可逆抑制剂.用传统的方法测得的(?)为42.5(mmol L)min~(-1).与邹氏方法测得的结果非常接近.  相似文献   

8.
L-lactate oxidation by skeletal muscle mitochondria   总被引:3,自引:0,他引:3  
1. Mitochondria isolated from rat skeletal muscle possess lactate dehydrogenase which is involved in direct oxidation of L-lactate in the presence of external NAD. 2. L-lactate oxidation can be stimulated in a reversible manner by ADP. 3. Mitochondrial lactate oxidation is sensitive to oxamate-inhibitor of LDH, alpha-cyano-3-hydroxy-cinnamate-pyruvate translocase inhibitor and respiratory chain inhibitors (rotenone, antimycin A, KCN). 4. In the same conditions the mitochondria did not oxidize pyruvate in the absence of malate, whereas, oxidize pyruvate plus external NADH in an uncoupling manner.  相似文献   

9.
Tauropine dehydrogenase (tauropine:NAD oxidoreductase) was purified from the shell adductor muscle of the ormer, Haliotis lamellosa. The enzyme was found to utilize stoichiometrically NADH as co-enzyme and pyruvate and taurine as substrates producing tauropine [rhodoic acid; N-(D-1-carboxyethyl)-taurine]. The enzyme was purified to a specific activity of 463 units/mg protein using a combination of ammonium sulphate fractionation, ion-exchange and affinity chromatography. The relative molecular mass was 38,000 +/- 1000 when assessed by gel filtration on Ultrogel AcA 54 and 42,000 +/- 150 by electrophoresis on 5-10% polyacrylamide gels in the presence of 1% sodium dodecyl sulphate; the data suggest a monomeric structure. Tauropine and pyruvate were found to be the preferred substrates. Among the amino acids tested for activity with the enzyme, only alanine is used as an alternative substrate, but with a rate less than 6% of the enzyme activity with taurine. Of the oxo acids tested, 2-oxobutyrate and 2-oxovalerate were also found to be substrates. Apparent Km values for the substrates NADH, pyruvate and taurine are 0.022 +/- 0.003 mM, 0.64 +/- 0.07 mM and 64.7 +/- 5.4 mM, respectively, at pH 7.0 and for the products, NAD+ and tauropine, are 0.29 +/- 0.01 mM and 9.04 +/- 1.27 mM, respectively, at pH 8.3. Apparent Km values for both pyruvate and taurine decrease with increasing co-substrate (taurine or pyruvate) concentration. NAD+ and tauropine were found to be product inhibitors of the forward reaction. NAD+ was a competitive inhibitor of NADH, whereas tauropine gave a mixed type of inhibition with respect to pyruvate and taurine. Succinate was found to inhibit non-competitively with respect to taurine and pyruvate with an apparent Ki value in the physiological range of this anaerobic end product. The inhibition by L-lactate, not an end product in the ormer, was competitive with respect to pyruvate. The physiological role or tauropine dehydrogenase during anaerobiosis is discussed.  相似文献   

10.
Both purified and functionally reconstituted bovine heart mitochondrial transhydrogenase were treated with various sulfhydryl modification reagents in the presence of substrates. In all cases, NAD+ and NADH had no effect on the rate of inactivation. NADP+ protected transhydrogenase from inactivation by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in both systems, while NADPH slightly protected the reconstituted enzyme but stimulated inactivation in the purified enzyme. The rate of N-ethylmaleimide (NEM) inactivation was enhanced by NADPH in both systems. The copper-(o-phenanthroline)2 complex [Cu(OP)2] inhibited the purified enzyme, and this inhibition was substantially prevented by NADP+. Transhydrogenase was shown to undergo conformational changes upon binding of NADP+ or NADPH. Sulfhydryl quantitation with DTNB indicated the presence of two sulfhydryl groups exposed to the external medium in the native conformation of the soluble purified enzyme or after reconstitution into phosphatidylcholine liposomes. In the presence of NADP+, one sulfhydryl group was quantitated in the nondenatured soluble enzyme, while none was found in the reconstituted enzyme, suggesting that the reactive sulfhydryl groups were less accessible in the NADP+-enzyme complex. In the presence of NADPH, however, four sulfhydryl groups were found to be exposed to DTNB in both the soluble and reconstituted enzymes. NEM selectively reacted with only one sulfhydryl group of the purified enzyme in the absence of substrates, but the presence of NADPH stimulated the NEM-dependent inactivation of the enzyme and resulted in the modification of three additional sulfhydryl groups. The sulfhydryl group not modified by NEM in the absence of substrates is not sterically hindered in the native enzyme as it can still be quantitated by DTNB or modified by iodoacetamide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Pig heart TPN-dependent isocitrate dehydrogenase is inactivated by reaction with 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB). The dependence of the rate constant for inactivation on the reagent concentration is nonlinear, and can be analyzed in terms of the existence of two mechanisms for reaction with the enzyme, one involving reversible binding prior to inactivation and the other a bimolecular reaction. Cyanide reacts with the inactive modified enzyme to yield thiocyano-isocitrate dehydrogenase without increasing the catalytic activity; this result suggests that inactivation by DTNB is not due to steric hindrance by the bulky thionitrobenzoate group bound to the enzyme. The inactive thiocyano enzyme binds manganous ion normally. In contrast to its effect on native enzyme, however, isocitrate does not strengthen the binding of Mn2+ to the thiocyano enzyme; the tightened binding of manganous-isocitrate may be critical for the catalytic activity of the enzyme. Protection against inactivation by DTNB is provided by isocitrate plus the activator, manganous ion, or the competitive inhibitor, calcium ion. The concerted inhibitors oxalacetate and glyoxylate, when present together with Mn2+ and TPN, also protect against loss of activity. A marked decrease in the inactivation rate constant to a finite limiting value is caused by saturating concentrations of TPNH and Mn2+, indicating that these ligands do not bind directly at the sites attacked by DTNB. The number of cysteine residues which react with DTNB concomitant with inactivation depends on the ligands present in the reaction mixture. In all cases, the equivalent of one -SH reacts without affecting activity. In the presence of Mn2+ and α-ketoglutarate, which do not appreciably affect the inactivation rate, loss of activity is proportional to reaction with two -SH groups. These results suggest that the integrity of a maximum of two cysteine residues is essential for the function of the pig heart isocitrate dehydrogenase, and that at least one cysteine residue may be located within the manganous-isocitrate binding site.  相似文献   

12.
Inhibition of milk xanthine oxidase by fluorescein bimercuriacetate (FMA) allows for the classification of S-containing groups according to their localization and role in the catalytic activity of the enzyme. The enzyme (E) complexes with FMA (E--FMA I and E--FMA II) differing in their activity, stoichiometry and spectral properties were studied at various experimental conditions, reaction time and FMA concentrations. The enzyme molecule contains 5 groups that are reactive towards FMA (E--FMA I) and are localized outside the active center. That these groups have no concern with activity and are subjected to modification irrespective of whether or not the xanthine oxidase molecule has an intact Mo-center. The formation of an inactive E--FMA II complex is associated with an additional (in comparison with E--FMA I) binding of two FMA molecules per molecule of the active enzyme. The stoichiometry of the E--FMA II complex was determined by the X-ray fluorescent method from the amount of the Hg in enzyme. A kinetic scheme of xanthine oxidase inhibition by FMA is proposed, according to which the inhibition is a result of modification of two groups in the enzyme active center, of which only one is essential for the enzyme activity. This scheme also postulates the role of reversible E--FMA complexes in the course of irreversible inhibition. Xanthine oxidase is protected against FMA by the substrate (xanthine), competitive inhibitors (azaxanthine and allopurinol) and acceptor (2,6-dichlorophenolindophenol), i. e., compounds which interact with the Mo-center of the enzyme. The EPR spectra of the dithionite-reduced E--FMA II complex were found to contain a "slow" signal, Mo(V), typical of the Mo-center devoid of labile sulphur. It was assumed that the essential group interacting with FMA in the active center of xanthine oxidase as a terminal sulphur which is a component of the coordination region of Mo.  相似文献   

13.
Lactate dehydrogenase (LDH) was isolated from pea seedlings by means of protamine sulphate and (NH4)2SO4 fractionation and chromatography on DEAE-cellulose and Sephadex G-150. The enzyme had a MW of ca 145 500. The kinetic properties studied were the lactate oxidation pH optimum (9·1) and the pyruvate reduction pH optimum (7·1). Km values were determined for four natural substrates (Lactate, pyruvate, NAD+ and NADH) and for other acids (glycollate, α-ketoglutarate and glyoxylate). The Ki value was determined for p-chloromercuribenzoate (PCMB) which is a noncompetitive inhibitor of LDH from pea plants, and the course of irreversible inhibition of the enzyme by iodoacetamide (IA) and n-ethylmaleimide (NEMI) was studied. Preincubation of LDH with the coenzyme protects against PCMB inhibition, indicating the important role of the sulfhydryl group in the active site.  相似文献   

14.
Analysis of the native enzyme and of the subunits produced upon its denaturation shows that pyruvate carboxylase from a thermophilic Bacillus is a tetramer with a molecular weight (mean value) of 558,000 and that the four polypeptide subunits are probably identical. The three functions (carboxyl carrier, carboxylation, and carboxyl transfer) in the pyruvate carboxylation reaction must therefore reside in this quarter-molecular polypeptide. The enzyme molecule contains four atoms of zinc and four molecules of D-biotin, and in the electron microscope the disposition of its four subunits presents a rhombic appearance. Reaction of the denatured enzyme with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) reveals 10 sulfhydryl groups/subunit. In the native enzyme less than one of these groups reacts with DTNB. By contrast, all of these groups (11/subunit) of the native chicken liver pyruvate carboxylase are accessible to DTNB. The thermophile enzyme is also more resistant to other sulfhydryl reagents and to denaturation under certain conditions than the avian enzyme.  相似文献   

15.
Pyruvate related compounds have been tested for their active or inhibitory properties on LDH. Special structure features were needed for compounds to be bound to the enzyme active site. Pyruvate and the LDH molecule were bound by the interaction of the carboxyl group or its ester derivative, with the enzyme. Ethyl pyruvate seemed to behave as a substrate of the enzyme whereas acetophenone, ethyl acetoacetate and beta-oxoglutarate did not act as substrates or inhibitors of LDH. Phenyl pyruvate, alpha-oxoglutarate and L-mandelate are not substrates but inhibitors of the LDH. It seems that a structure having a carbonyl group in the alpha-position to the carboxyl is required for the binding of a compound to the LDH molecule. Glyoxylate alpha-oxobutyrate and alpha-oxovalerianate appear to be worse LDH substrates than pyruvate itself. This seems to suggest that the shortening or the extension of the pyruvate aliphatic chain induces a decrease of the affinity of the enzyme towards their substrate homologues.  相似文献   

16.
A series of 16 analogs of 5'-deoxy-5'-adenosylcobalamin (adenosylcobalamin) were examined for their effects on the diol dehydrase system of Klebsiella pneumoniae (Aerobacter Aerogenes). Four analogs, ara-adenosyl-, aristeromycyl-, 3-isoadenosyl-, and nebularylcobalamin, were able to function as coenzymes in the diol dehydrase reaction, coenzyme activity decreasing in that order. Like the native holoenzyme, complexes of the enzyme with these four analogs show a cob(II)alamin-like absorption peak or shoulder in the presence of 1,2-propanediol. Analogs containing hypoxanthine, cytosine, or benzimidazole do not function as coenzymes, but are weak competitive inhibitors in the presence of adenosylcobalamin. Analogs in which the D-ribosyl moiety is replaced by L-ribose or by an alkyl chain of 2 to 6 carbons are inactive as coenzymes, but act as competitive inhibitors with extremely high affinity for the apoenzyme. Complexes with the inactive analogs showed visible spectra similar to those of the corresponding free cobalamins. Upon anaerobic photolysis and subsequent aeration, complexes with the first group of inactive analogs produced unusually stabilized cob(II)alamin, while complexes with the second group of inactive analogs were readily photolyzed to a hydroxocobalamin-enzyme complex. Complexes with adeninylpentyl- and L-adenosylcobalamin were stable to light under the same conditions. These findings suggest that both the ribose and the adenine moiety of the nucleoside participate in enzyme-coenzyme interaction, involving not only the binding to the apoenzyme but also the activation of the carbon-cobalt bond.  相似文献   

17.
Initial velocity studies in the absence and presence of product and dead-end inhibitors suggest a steady-state random mechanism for malic enzyme in the direction of reductive carboxylation of pyruvate. For this quadreactant enzymatic reaction (Mn2+ is a pseudoreactant), initial velocity patterns were obtained under conditions in which two substrates were maintained at saturating concentrations while one reactant was varied at several fixed concentrations of the other. Data from the resulting reciprocal plots, analyzed in terms of a bireactant mechanism, are consistent with a sequential mechanism with an obligatory order of addition of metal prior to pyruvate. NAD is competitive against NADH whether pyruvate and CO2 are maintained at low or high concentrations, whereas it is noncompetitive against pyruvate and CO2. Thio-NADH, alpha-ketobutyrate, and nitrite were used as dead-end analogs of NADH, pyruvate, and CO2, respectively. Thio-NADH is competitive against NADH, whereas it is noncompetitive against pyruvate and CO2, in accordance with a random mechanism. alpha-Ketobutyrate and nitrite gave noncompetitive inhibition against all substrates. The noncompetitive patterns observed for alpha-ketobutyrate versus pyruvate and nitrite versus CO2 suggest binding of the inhibitor to both the E.Mn.NADH and E.Mn.NAD complexes. Primary deuterium isotope effects are equal on all kinetic parameters, in agreement with the random mechanism, and suggest equal off-rates for NAD from E.Mn.NAD as well as pyruvate and NADH from E.Mn.NADH.pyruvate. Data are consistent with an overall symmetry in the malic enzyme reaction in the two reaction directions with a requirement for metal bound prior to pyruvate and malate.  相似文献   

18.
Purified cytoplasmic and membrane-bound lactate dehydrogenases (LDH) from white muscle of skate were characterized, Km for pyruvate and NADH for purified LDH were 150 +/- 16 and 29 +/- 7 microM, and for membrane-bound LDH were 185 +/- 22 and 7.5 +/- 1.5 microM, respectively. The membrane-bound enzyme was not inhibited by high pyruvate concentration (up to 20 mM) in contrast to purified LDH. Part of membrane-bound LDH was released by incubation in solutions with a high level of KCl (up to 1 M) or at alkaline pH. The inactivation rate during trypsin digestion for solubilized LDH was 2-3-fold higher than that for the membrane-bound enzyme.  相似文献   

19.
Procedures are described for isolating highly purified porcine liver pyruvate and α-ketoglutarate dehydrogenase complexes. Rabbit serum stabilized these enzyme complexes in mitochondrial extracts, apparently by inhibiting lysosomal proteases. The complexes were purified by a three-step procedure involving fractionation with polyethylene glycol, pelleting through 12.5% sucrose, and a second fractionation under altered conditions with polyethylene glycol. Sedimentation equilibrium studies gave a molecular weight of 7.2 × 106 for the liver pyruvate dehydrogenase complex. Kinetic parameters are presented for the reaction catalyzed by the pyruvate dehydrogenase complex and for the regulatory reactions catalyzed by the pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. For the overall catalytic reaction, the competitive Ki to Km ratio for NADH versus NAD+ and acetyl CoA versus CoA were 4.7 and 5.2, respectively. Near maximal stimulations of pyruvate dehydrogenase kinase by NADH and acetyl CoA were observed at NADH:NAD+ and acetyl CoA:CoA ratios of 0.15 and 0.5, respectively. The much lower ratios required for enhanced inactivation of the complex by pyruvate dehydrogenase kinase than for product inhibition indicate that the level of activity of the regulatory enzyme is not directly determined by the relative affinity of substrates and products of catalytic sites in the pyruvate dehydrogenase complex. In the pyruvate dehydrogenase kinase reaction, K+ and NH+4 decreased the Km for ATP and the competitive inhibition constants for ADP and (β,γ-methylene)adenosine triphosphate. Thiamine pyrophosphate strongly inhibited kinase activity. A high concentration of ADP did not alter the degree of inhibition by thiamine pyrophosphate nor did it increase the concentration of thiamine pyrophosphate required for half-maximal inhibition.  相似文献   

20.
1. L-Lactate dehydrogenase from lettuce (Lactuca sativa) leaves was purified to electrophoretic homogeneity by affinity chromatography. 2. In addition to its NAD(H)-dependent activity with L-lactate and pyruvate, the enzyme also catalyses the reduction of hydroxypyruvate and glyoxylate. The latter activities are not due to a contamination of the enzyme preparations with hydroxypyruvate reductase. 3. The enzyme shows allosteric properties that are markedly by the pH. 4. ATP is a potent inhibitor of the enzyme. The kinetic data suggest that the inhibition by ATP is competitive with respect to NADH at pH 7.0 and 6.2. The existence of regulatory binding sites for ATP and NADH is discussed. 5. Bivalent metal cations and fructose 6-phosphate relieve the ATP inhibition of the enzyme. 6. A function of leaf L-lactate dehydrogenase is proposed as a component of the systems regulating the cellular pH and/or controlling the concentration of reducing equivalents in the cytoplasm of leaf cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号