首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We employed solid-phase immunochemical methods to probe the dynamics of ubiquitin pools within selected rat skeletal muscles. The total ubiquitin content of red muscles was greater than that of white muscles, even though the fractional conjugation was similar for both types of muscle. The specificity for conjugated ubiquitin in solid-phase applications, previously demonstrated for an affinity-purified antibody against SDS-denatured ubiquitin, was retained when used as a probe for ubiquitin-protein adducts in tissue sections. Immunohistochemical localization revealed that differences in ubiquitin pools derived from the relative content of red (oxidative) vs white (glycolytic) fibers, with the former exhibiting a higher content of ubiquitin conjugates. Subsequent immunogold labeling demonstrated statistically significant enhanced localization of ubiquitin conjugates to the Z-lines in both red and white muscle fiber types.  相似文献   

2.
《Autophagy》2013,9(4):631-641
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

3.

The present study was initiated to compare the histopathology of two isolates of Bacillus thuringiensis (subsp. indiana and subsp. morrisoni), in the larval tissues of Plodia interpunctella (Hübner) and Tribolium castaneum (Herbst). Most changes were localized in the midgut. Other effects were observed in muscles and tracheoles. In P. interpunctella, larvae were treated with a lethal dose of 500 μg of B.t. subsp. indiana/g of grains. Changes appeared in midgut cells 8h after treatment. At 24h after treatment, cytoplasmic vacuolization was observed in the basal part of cells. Swollen epithelial cells were accompanied by swelling of the nuclei of columnar and goblet cells. The nuclei of the columnar cells were pycnotic and the membraneous sheaths were completely ruptured. The mitochondria had vacuoles 2h after treatment followed by complete lysis 24h after treatment. The circular and longitudinal muscles showed relaxation and disintegration of their fibrils and mitochondria. In T. castaneum, larvae were treated with a lethal dose of 5000 μg of B.t. subsp. morrisoni/g of grains. Changes appear in the regenerative cells, where cytoplasmic vacuolization and pycnotic nuclei were observed. The tracheal cells showed relaxation of the taenideal cuticular lining and disintegration of mitochondria and chromatin clumping granules around the nuclear membrane 48h after treatment. Seventy-two hours after treatment, the tracheal and circular muscle fibers showed complete relaxation. The two varieties of B.t. that were collected from grain dust in Egypt, have potential as control agents for stored-product moths and beetles. The toxic action differs in the two tested insect species.  相似文献   

4.
We examined ultrastructure protective phenomena and mechanisms of slow and fast muscles in hibernating Daurian ground squirrels (Spermophilus dauricus). Some degenerative changes such as slightly decreased sarcomere length and vacuolization occurred in hibernation, but periaxonal capsular borders in intrafusal fibers remained distinct and the arrangement of extrafusal fibers and Z-lines unscathed. In soleus samples, the number of glycogenosomes more than tripled during hibernation. The expression of phosphorylated glycogen synthase remained unaltered while that of glycogen phosphorylase decreased during hibernation. The number of extensor digitorum longus glycogenosomes decreased and the expression of phosphorylated glycogen synthase decreased, while glycogen phosphorylase expression remained unaltered. The nuclei number remained unchanged. Kinesin and desmin, preventors of nuclear loss and damage, were maintained or just slightly reduced in hibernation. The single-fiber mitochondrial concentration and sub-sarcolemmal mitochondrial number increased in both muscle types. The expression of vimentin, which anchors mitochondria and maintains Z-line integrity, was increased during and after hibernation. Also, dynamin-related protein 1, mitochondrial fission factor, and adenosine triphosphate synthase were elevated in both muscle types. These findings confirm a remarkable ultrastructure preservation and show an unexpected increase in mitochondrial capacity in hibernating squirrels.  相似文献   

5.
The flight-related tergo-coxal muscles of flying and flightless beetles are compared. In the flying beetle, Pachynoda sinuata, the myofibrils and cylindrical and the myofilaments packed in double hexagonal arrays. The sarcomeres are short (2.8 micrometer) and wide with many large, closely packed adjacent mitochondria but the sarcoplasmic reticulum is poorly developed in this fibrillar (asynchronous) muscle. Sarcoplasmic glycogen in rosette form is abundant. In the flightless beetle, Anthia thoracica, the myofibrils are lamellar-like with sarcomeres of 5.3 micrometer. The myosin filaments form a single hexagonal array each thick filament having an orbital of 11 to 12 thin filaments. The width of the Z-line (120 nm) of A. thoracia muscle was twice that of the Z-line of P. sinuata muscle. The sarcoplasmic reticulum and T-system are well-developed in this afibrillar (synchronous) muscle. Few glycogen granules are present. Triangular projections of the sarcolemma occur regularly opposite the Z-lines in A. thoracica and they appear to extend into the Z-lines. Membranous connections joint adjacent Z-lines in A. thoracica and occasionally in P. sinuata.  相似文献   

6.
Integrin-mediated adhesion maintains sarcomeric integrity   总被引:1,自引:0,他引:1  
Integrin-mediated adhesion to the ECM is essential for normal development of animal tissues. During muscle development, integrins provide the structural stability required to construct such a highly tensile, force generating tissue. Mutations that disrupt integrin-mediated adhesion in skeletal muscles give rise to a myopathy in humans and mice. To determine if this is due to defects in formation or defects in maintenance of muscle tissue, we used an inducible, targeted RNAi based approach to disrupt integrin-mediated adhesion in fully formed adult fly muscles. A decrease in integrin-mediated adhesion in adult muscles led to a progressive loss of muscle function due to a failure to maintain normal sarcomeric cytoarchitecture. This defect was due to a gradual, age dependent disorganization of the sarcomeric actin, Z-line, and M-line. Electron microscopic analysis showed that reduction in integrin-mediated adhesion resulted in detachment of actin filaments from the Z-lines, separation of the Z-lines from the membrane, and eventually to disintegration of the Z-lines. Our results show that integrin-mediated adhesion is essential for maintaining sarcomeric integrity and illustrate that the seemingly stable adhesive contacts underlying sarcomeric architecture are inherently dynamic.  相似文献   

7.
Ubiquitin-dependent proteolysis has been implicated in the recognition and selective elimination of paternal mitochondria and mitochondrial DNA (mtDNA) after fertilization in mammals. Initial evidence suggests that this process is contributed to by lysosomal degradation of the ubiquitinated sperm mitochondrial membrane proteins. The present study examined the role of the proteasome-dependent protein degradation pathway of the ubiquitin system, as opposed to lysosomal proteolysis of the ubiquitinated proteins, in the regulation of sperm mitochondrion elimination after fertilization. Boar spermatozoa prelabeled with vital fluorescent mitochondrial probes MitoTracker were used to trace the degradation of paternal mitochondria after in vitro fertilization (IVF) of porcine oocytes. The degradation of sperm mitochondria in the cytoplasm of fertilized oocytes started very rapidly, i.e., within 12-20 h after insemination. Four stages of paternal mitochondrial degradation were distinguished, ranging from an intact mitochondrial sheath (type 1) to complete degradation (type 4). At 27-30 h postinsemination, 96% of zygotes contained the partially (type 3) or completely (type 4) degraded sperm mitochondria. Highly specific peptide inhibitors of the ubiquitin-proteasome pathway, lactacystin (10 and 100 microM) and MG132 (10 microM), efficiently blocked the degradation of the sperm mitochondria inside the fertilized egg when applied 6 h after insemination. Using 10 microM MG132, only 13.6% of fertilized oocytes screened 27-30 h after IVF displayed type 3 sperm mitochondria, and there was no incidence of type 4, completely degraded mitochondria. Although lactacystin is not a reversible agent, the effect of MG132 was fully reversible: zygotes transferred to regular culture medium after 24 h of culture with 10 microM MG132 resumed development and degraded sperm mitochondria within the next cell cycle. Surprisingly, penetration of the zona pellucida (ZP) was also inhibited by MG-132 and lactacystin when the inhibitors were added at insemination. Altogether, these data provide the first evidence of the participation of proteasomes in the control of mammalian mitochondrial inheritance and suggest a new role of the ubiquitin-proteasome pathway in mammalian fertilization.  相似文献   

8.
Mitochondria are crucial organelles in the production of energy and in the control of signalling cascades. A machinery of pro‐fusion and fission proteins regulates their morphology and subcellular localization. In muscle this results in an orderly pattern of intermyofibrillar and subsarcolemmal mitochondria. Muscular atrophy is a genetically controlled process involving the activation of the autophagy‐lysosome and the ubiquitin–proteasome systems. Whether and how the mitochondria are involved in muscular atrophy is unknown. Here, we show that the mitochondria are removed through autophagy system and that changes in mitochondrial network occur in atrophying muscles. Expression of the fission machinery is per se sufficient to cause muscle wasting in adult animals, by triggering organelle dysfunction and AMPK activation. Conversely, inhibition of the mitochondrial fission inhibits muscle loss during fasting and after FoxO3 overexpression. Mitochondrial‐dependent muscle atrophy requires AMPK activation as inhibition of AMPK restores muscle size in myofibres with altered mitochondria. Thus, disruption of the mitochondrial network is an essential amplificatory loop of the muscular atrophy programme.  相似文献   

9.
10.
The possibility of tissue-specific effects regarding mitochondrial sensitivity to AZT was evaluated in this study. When mitochondria isolated from liver, kidney, skeletal and cardiac muscle were oxidizing glutamate, a dose-dependent inhibition by AZT of state 3 respiration was observed; using succinate as substrate the inhibition occurred only in skeletal and cardiac muscle mitochondria. The same results were obtained with FCCP-uncoupled mitochondria. NADH oxidase of intact and disrupted mitochondria, isolated from all four tissues was strongly inhibited. Succinate oxidase activity was inhibited by AZT only in intact mitochondria from skeletal and cardiac muscles, suggesting the involvement of succinate transport systems. Similarly, inhibition by the drug of the hydrolytic activity of H+-ATPase was observed only in mitochondria of these tissues. These effects taken together, indicate a tissue/carrier-specific inhibition in vitro, although its precise mechanism requires further research. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Muscle atrophy is caused by accelerated protein degradation and occurs in many pathological states. Two muscle-specific ubiquitin ligases, MAFbx/atrogin-1 and muscle RING-finger 1 (MuRF1), are prominently induced during muscle atrophy and mediate atrophy-associated protein degradation. Blocking the expression of these two ubiquitin ligases provides protection against muscle atrophy. Here we report that miR-23a suppresses the translation of both MAFbx/atrogin-1 and MuRF1 in a 3'-UTR-dependent manner. Ectopic expression of miR-23a is sufficient to protect muscles from atrophy in vitro and in vivo. Furthermore, miR-23a transgenic mice showed resistance against glucocorticoid-induced skeletal muscle atrophy. These data suggest that suppression of multiple regulators by a single miRNA can have significant consequences in adult tissues.  相似文献   

12.
The distribution of ubiquitin protein in meristematic mesophyll cells of barley (Hordeum vulgare L.) leaves was investigated by using immunofluorescence microscopy. Simultaneous observation of nuclei was achieved byDAPI (4 6-diamidino-2-phenylindol-dihydrochloride) staining. A strong correlation between the chromatin organisation and the ubiquitin distribution could be observed. Interphase nuclei revealed an intense content of ubiquitin and accumulation of ubiquitin at the nuclear envelope, whereas condensed chromosomes of dividing cells excluded any ubiquitin appearance. During cell division, the aggregation of ubiquitin protein was detected in the area of the mitotic spindle in anaphase as well as the area of the cell plate in the late telophase.  相似文献   

13.
14.
Dominant autosomal mutation l(2)M66 DCS induced in Drosophila melanogaster by ethyl-methane-sulfonate was studied. Electron-microscopic studies of asynchronous (fibrillar) and synchronous (tubular) muscles in 24-hour old mutants showed pathological changes in their fine structure. All systems were affected: the fragmentation of the Z-lines, disappearance of protofibrils, degenerative changes of mitochondria, sarcoplasmic reticulum, and the T-system, the appearance of membrane aggregates and lysosomes, the presence of a large amount of glycogen were detected. These changes in the ultrastructure of the flight muscles in mutants are similar to those observed in the process of physiological degeneration of insect muscles.  相似文献   

15.
The question was investigated whether mitochondria in the mammalian skeletal muscle fiber syncytium incorporate gene products encoded by one or many nuclei. Mouse chimeras were produced from strains which differ in their electrophoretic variants of the nuclear-coded mitochondrial protein, malic enzyme (MOD-2, E.C. 1.1.1.40, l-malate NADP+ oxidoreductase decarboxylating). The MOD-2 phenotypes of skeletal muscles of these chimeras were characterized in a starch gel electrophoretic system. The results indicate that individual mitochondria can contain products encoded by multiple nuclei and therefore that, for skeletal muscle mitochondria, the cell is not subdivided into nuclear territories. Possible mechanisms of gene product distribution in skeletal muscle fibers are discussed.This work was supported by Grants MT-1940 (K. B. F.) and MA-6411 (A. C. P.) from the Medical Research Council of Canada, and by the Muscular Dystrophy Association of Canada (A. C. P. and P. M. F.).  相似文献   

16.
Mitochondria isolated from tobacco leaves incorporated 14C-leucine into the protein and the rate was enhanced by tobacco mosaic virus (TMV) infection as compared with noninfected level. In vitro amino acid incorporation by mitochondria required adenosine triphosphate (ATP), Mg2+, and KC1 and the energy sources from oxidative phosphorylation as well as from ATP-generating system. This incorporation was inhibited by ribonuclease (RNase), deoxyribonuclease (DNase), actinomycin D, mitomycin C, puromycin, and chloramphenicol added in the reaction medium. The pretreatment of the mitochondria with DNase and actinomycin D reduced the rate of incorporation. The mitochondria incorporated 3H-guanosine triphosphate (GTP) and this activity was blocked by actinomycin D. The presence in this system of 15,000 g supernatant cell sap fraction or bacterial contamination was carefully checked obtaining a negative result. The reaction product into which l4C-amino acids incorporated was solubilized by trypsin. The nature of the amino acid incorporating activity of isolated mitochondria obtained from TMV-infected tobacco leaves is discussed.  相似文献   

17.
Mdx mice uniquely recover from degenerative dystrophic lesions by an intense myoproliferative (regenerative) response. To investigate a potential role of endogenous basic fibroblast growth factor (bFGF) in injury-repair processes, we investigated its localization in several striated muscles of mdx and control mice using immunofluorescence labeling with specific antibodies. Basic FGF was localized consistently to the myofiber periphery and nuclei of intact myofibers, as well as in single, dystrophin-positive cells in close association with the myofibers (potential myosatellite cells). In mdx mice, actively degenerating skeletal or cardiac muscle fibers presented intense cytoplasmic anti-bFGF staining prior to mononuclear infiltration. Small regenerating fibers in mdx skeletal muscle exhibited greater bFGF accumulation than adjacent larger myofibers. Strong nuclear anti-bFGF immunolabeling was frequently observed in mdx cardiac myocytes at the borders of necrotic regions. In agreement with differences in intensity of immunolabeling, extracts from slow-twitch muscles contained higher levels of bFGF compared to those from fast-twitch muscles, in both control and mdx mice. In addition, bFGF levels were consistently higher in extracts from all mdx tissues compared to those derived from their control counterparts. Our data suggest that bFGF participates in the degenerative and regenerative responses of striated muscle to dystrophic injury and also indicate a potential involvement of this factor with the physiology of different striated muscles.  相似文献   

18.
Summary The pathological mechanism of restenosis is primarily attributed to excessive proliferation of vascular smooth muscle cells (SMC). Actinomycin D has been regarded as a potential candidate to prevent balloon injury-induced neointimal formation. To explore its molecular mechanism in regulating cell proliferation, we first showed that actinomycin D markedly reduced the SMC proliferation via the inhibition of BrdU incorporation at 80 nM. This was further supported by the G1-phase arrest using a flowcytometric analysis. Actinomycin D was extremely potent with an inhibitory concentration IC50 at 0.4 nM, whereas the lethal dose LD50 was at 260 μM. In an in vivo study, the pluronic gel containing 80 nM and 80 μM actinomycin D was applied topically to surround the rat carotid adventitia; the thickness of neointima was substantially reduced (45 and 55%, respectively). The protein expression levels of proliferating cell nuclear antigen (PCNA), focal adhesion kinase (FAK), and Raf were all suppressed by actinomycin D. Extracellular signal-regulated kinases (Erk) involved in cell-cycle arrest were found to increase by actinomycin D. These observations provide a detailed mechanism of actinomycin D in preventing cell proliferation thus as a potential intervention for restenosis.  相似文献   

19.
Hepatic cirrhosis is associated with negative nitrogen balance and loss of lean body mass. This study aimed to identify the specific proteolytic pathways activated in skeletal muscles of cirrhotic rats. TNF-alpha can stimulate muscle proteolysis; therefore, a potential relationship between TNF-alpha and muscle wasting in liver cirrhosis was also evaluated. Cirrhosis was induced by bile duct ligation (BDL) in male adult Sprague-Dawley rats. mRNA and protein levels of various targets were determined by RT-PCR and Western blotting, respectively. The proteolytic rate was measured ex vivo using isolated muscles. Compared with sham-operated controls, BDL rats had an increased degradation rate of muscle proteins and enhanced gene expression of ubiquitin, 14-kDa ubiquitin carrier protein E2, and the proteasome subunits C2 and C8 (P < 0.01). The muscle protein levels of free ubiquitin and conjugated ubiquitin levels were also elevated (P < 0.01). However, there was no difference between the two groups with regard to cathepsin and calpain mRNA levels. Cirrhotic muscle TNF-alpha levels were increased and correlated positively with free and conjugated ubiquitin (P < 0.01). We conclude that the ubiquitin-proteasome system is involved in muscle wasting of rats with BDL-induced cirrhosis. TNF-alpha might play a role in mediating activation of this proteolytic pathway, probably through a local mechanism.  相似文献   

20.
Abstract Newly‐mated Solenopsis invicta flight queens cast (shed) their wings within 24 h. An examination of their flight muscle cells reveals numerous apoptotic (terminal deoxynucleotidyl transferase mediated dUTP nick end labelling positive) nuclei. By contrast, flight muscle cells of mature alate virgin (MAV) females removed 24 h earlier from a managed laboratory colony exhibit neither wing casting nor the presence of apoptotic nuclei. Using MAV‐females, the initiation of flight muscle apoptosis and wing casting is compared with artificial mating using seminal fluid with sperm, seminal fluid with no sperm, saline as a negative control, the mating flight as simulated in the laboratory, elevated CO2 exposure, application of methoprene (a juvenile hormone analogue), or injection of 20‐hydroxyecdysone. Numerous apoptotic nuclei are revealed in the flight muscle cells of mated dealate females 24 h after a natural mating flight but not in MAV‐females controls. Only artificial mating of MAV‐females reveals a similar pattern of apoptotic nuclei flight muscle 24 h after insemination. None of the other factors tested induces flight muscle cell apoptosis in MAV‐females. Methoprene dissolved in methyl ethyl ketone, at a concentration of 0.44 ng per μL per ant, stimulates 90% of MAV‐females to shed their wings within 24 h, as opposed to 10% or less wing shedding for the methyl ethyl ketone control and all other treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号