首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study determined taste thresholds for copper as its speciation was varied among free cupric ion, complexed cupric ion, and precipitated cupric particles. The impact of copper chemistry on taste is important as copper is added to many beverages and can be present in drinking water as a natural mineral or due to corrosion of copper plumbing. A one-of-five test was used to define thresholds with solutions containing 0.025-8 mg/l Cu (from copper sulfate) in distilled or mineralized water of varying pH. The mineralized water was designed to mimic the composition of a typical tap water. Group thresholds for copper in either distilled-deionized water or mineralized water were not significantly different and ranged from 0.4 to 0.8 mg/l Cu. A difference from control test was used to assess the impact of soluble and particulate copper on taste. Soluble copper species, including free cupric ion and complexed copper species, were readily tasted, while particulate copper was poorly tasted.  相似文献   

2.
3.
The purpose of this study was to investigate if the intestinal absorption of copper in drinking water is altered in the presence of complexing agents from a fulvic acid mixture and an infant formula powder. Ten to twelve day old rat pups were given a single oral dose of radio-labeled Cu in deionized water (0.93 mg Cu/l), in water containing fulvic acids (10 mg/l), in infant formula mixed with deionized water, or in infant formula mixed with water containing fulvic acids. Six hours after dosage, radioactive Cu was analyzed in the mucosa of the small intestine, the liver and the remaining carcass (excluding the liver and gastrointestinal tract) by gamma counting. Dialysis and centrifugation experiments showed that Cu was complexed by components in the fulvic acid and formula mixtures, although the presence of fulvic acids in the water did not alter the Cu fractionation in the formula. The fractional Cu uptake (% of dose) from the intestinal lumen to the mucosa was not markedly changed by the presence of the chelating agents. However, the retention of Cu in the intestinal mucosa was increased by both fulvic acids and formula. Concomitantly, the absorption rate of Cd to the circulatory system was decreased. No interactive effect between fulvic acids and formula was found on the Cu absorption. These findings indicate that the water quality may be an important determinant of the rate of intestinal Cu absorption from drinking water. Moreover, in the future risk assessment of copper in drinking water, the possibility of alterations in absorption of drinking-water Cu has to be considered when the drinking water is used for cooking.  相似文献   

4.
The effects of transition metals on nonenzymatic and ceruloplasmin catalyzed epinephrine oxidation were investigated by studying rates of epinephrine oxidation in purified buffers and in the presence of metal chelating agents. We found that epinephrine does not “autoxidize” in sodium chloride solutions prepared with deionized water that was further purified by chromatography over Chelex 100 resin prior to use. Epinephrine was oxidized rapidly in sodium chloride prepared with tap water (1.20±0.12 nmoles/min) or in deionized water (0.40±0.80 nmoles/min), but this oxidation was prevented by the addition of Desferal, a potent metal chelating agent. Epinephrine oxidation was enhanced upon the addition of ceruloplasmin, and this oxidation rate could be slowed, but not eliminated, by the addition of Desferal. If epinephrine solutions were preincubated for 72 hours with Desferal prior to ceruloplasmin addition, however, no oxidation was observed. Epinephrine was shown to form colored complexes with both iron and copper at pH 7.0. The Fe(III)-epinephrine complex was much more stable than was the Cu(II)-epinephrine complex. Oxygen consumption studies of ceruloplasmin catalyzed epinephrine oxidation showed that copper was a better promoter of epinephrine oxidation than was iron, suggesting that ceruloplasmin-catalyzed epinephrine oxidation results from adventitious copper bound to the purified enzyme. In light of these results, the physiological relevance of ceruloplasmin catalyzed oxidation of biogenic amines may be minor.  相似文献   

5.
Several families of Talca city, Chile complained to health authorities for what they attributed to consumption of copper (Cu)-contaminated drinking water. We assessed the situation 6–12 mo after the initiation of complaints by characterizing the symptoms reported, the chemistry of drinking water, and the Cu concentration in stagnant drinking water. After completing a census, 1778 households accepted participation and were categorized as follows: category 1, Cu plumbing for tap water and dwellers reporting health complaints (HC); category 2, Cu plumbing for tap water and dwellers reporting no HC; category 3, plastic plumbing for tap water and dwellers reporting no HC. Questionnaires recorded characteristics of households and symptoms presented by each member of the family in the last 3 mo. The Cu concentration in drinking water was measured in a subsample of 80 homes with Cu pipes. In category 1, participants presented significantly more abdominal pain, diarrhea, and/or vomiting (gastrointestinal [GI] symptoms) in comparison to category 3 and to categories 2 plus 3. The stagnant Cu concentrations measured in drinking water in all houses studied were below the US Environmental Protection Agency guideline value (<1.3 mg Cu/L). In summary, data obtained by interviews suggested that individuals in some areas of Talca city were suffering more GI symptoms potentially related to Cu excess, but measurement of Cu concentration in stagnant tap waters ruled out the association between Cu exposure and GI symptom reports at the time of this study. The dose-response curves for GI symptoms and Cu exposure now available were crucial in the analyses of results.  相似文献   

6.
斑叶竹节秋海棠微繁殖的研究   总被引:1,自引:0,他引:1  
  相似文献   

7.
The Orangi river is an important all-year source of water for wildlife in the northern part of the Serengeti National Park. At two points along the river in the Banagi area, tributaries draining the adit and tailings of the Kilimafeza mine impact the Orangi. The former Au-Cu mine is subject to occasional wet season flooding leading to the release of iron ochres from the adit and physical as well as chemical mobilization of tailings material. The unpolluted river chemistry is essentially Na-Ca-HCO 3 and well-buffered. Drainage water; from the tailings are characterized by low pH (2.3) and high concentration of sulphate (up to 3280 mg/l), aluminium (275 mg/l), arsenic (324 mg/l), copper (125 mg/l), iron (622 mg/l), lead (21 mg/l), manganese (65 mg/l), and zinc (126 mg/l). Adit-drainage waters are typically of a lower pH (4.6) and have a lower concentration of sulphate (up to 1840 mg/l) and metals (up to 25 mg/l Al, 92 mg/l As, 42 mg/l Cu, 258 mg/l Fe, 9.6 mg/l Pb, 53 mg/l Mn, and 102 mg/l Zn). Mixing of these acidic waters with the alkaline river leads to rapid metal precipitation as Fe-ochre coatings on clastic sediment. This effect is more noticeable in the dry season. Consequently, although the tributaries draining the two sources are heavily contaminated, the effective buffering of the mine drainage waters restricts any potential pollution to within 1 km of the mine workings. Faecal coliforms show an antipathetic relationship to low pH and high metal conditions. The only mobile metals in the water outside this area are Mn and Zn and their contamination can be biologically monitored using a protozoan-based bioassay.  相似文献   

8.
Addition of copper sulfate (0.1 to 0.4 mg l(-1)) to tryptic soy broth (TSB) had no effect on growth rate of the bacterial pathogen Lactococcus garvieae. Giant freshwater prawns Macrobrachium rosenbergii were injected with L. garvieae (4 x 10(6) colony-forming units [cfu] prawn(-1)) grown in TSB or TSB containing copper sulfate at 0.1, 0.2, 0.3 or 0.4 mg l(-1). After 48 h, the cumulative mortality was significantly (p < 0.05) higher for prawns exposed to L. garvieae grown in 0.4 mg l(-1) copper sulfate than at the lower concentrations examined. In other experiments, prawns were injected with TSB-grown L. garvieae (4 x 10(6) and 2 x 10(5) cfu prawn(-1)), then held in water containing copper sulfate. After 8 h the mortality of L. garvieae-exposed prawns held in water containing 0.4 mg l(-1) copper sulfate was significantly higher than prawns held in water containing 0.2 and 0.3 mg l(-1) copper sulfate. At the lower L. garvieae density, cumulative mortality of prawns increased directly with ambient copper sulfate concentrations in the range of 0.2 to 0.4 mg l(-1). All prawns survived a 168 h exposure to 0.1 mg l(-1) copper sulfate. Prawns exposed to different concentrations of copper sulfate were examined for hemocyte density, phenoloxidase activity and respiratory burst. No significant differences in hemocyte density were observed among treatments. In prawns following a 48 h exposure to 0.1 mg l(-1) copper sulfate, phenoloxidase activity was decreased, but respiratory burst was increased. In conclusion, copper sulfate increased the virulence of L. garvieae to M. rosenbergii and modulated its immune system. Copper sulfate at 0.1 mg l(-1) decreased susceptibility of M. rosenbergii to L garvieae infection, whereas at 0.2 mg l(-1) the susceptibility was increased. The generation of superoxide anion by M. rosenbergii exposed to copper sulfate at a concentration higher than 0.2 mg l(-1) was considered to be cytoxic.  相似文献   

9.
The effect that nickel, copper, and zinc sulfates have on seed germination and the initial stages of the ontogenesis of water parsnip and wood club-rush has been investigated. Nickel and copper in the concentration range of 250–500 mg/l and zinc at a concentration of 500 mg/l were the most toxic for water parsnip seeds, while, for the wood club-rush seeds, maximum toxicity was observed at Ni and Cu concentrations ranging from 50 to 500 mg/l and at Zn concentrations of 250–500 mg/l. The development of water parsnip seedlings was normal at Ni concentrations of 1–25 mg/l, Cu concentrations of 1–10 mg/l, and Zn concentrations up to 50 mg/l; the development of wood club-rush seedlings was normal at a Ni concentration of 1 mg/l, and Cu and Zn concentrations of 1–25 mg/l. A further increase in the concentration caused photosynthesis suppression, slower growth of the vegetation organs, and their subsequent necrosis. Water parsnip is more resistant to the toxicants.  相似文献   

10.
A Note on the Survival of some Bacteria in Different Diluents   总被引:3,自引:3,他引:0  
The best diluent for four bacterial species was 0·1% (w/v) peptone solution. Tap water containing 0·1% (w/v) sodium thiosulphate was less satisfactory but tap water, tap water treated with charcoal, quarter-strength Ringer's solution, 0·85% (w/v) sodium chloride solution and glass distilled water were all bactericidal to one or more of the test species.  相似文献   

11.
Vanadium compounds have shown promise in the treatment of diabetes and in cancer prevention. The aim of this study is to investigate the effects of Jeju ground water, containing the vanadium compounds S1 (8.0 ± 0.9 μg/l) and S3 (26.0 ± 2.0 μg/l), and of vanadyl sulfate (VOSO(4), 26 μg/l) on antioxidant systems in human Chang liver cells. Cells were incubated for ten passages in media containing deionized distilled water, Jeju ground water (S1, S3), or VOSO(4). S1 and S3 increased the gene and protein expression and the enzymatic activities of antioxidant enzymes, including superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase. VOSO(4) was likewise found to improve mRNA and protein expression as well as the activities of these enzymes. Taken together, these results suggest that the antioxidant properties of Jeju ground water, containing vanadium compounds, and of vanadyl sulfate were due to stimulatory effects on antioxidant enzyme activities and antioxidant enzyme expression.  相似文献   

12.
Fresh hearts of dog were perfused through the coronary vessels with 1000 ml. of fixative (chloral hydrate, 5 g. per 100 ml. of 70% ethyl alcohol) and blocks of tissue 2 × 5 mm. from epicardium to endocardium fixed 48 hours in the same fixative. The blocks were placed in 95% alcohol containing 0.3% addition of strong ammonia for 4 hours, followed by 2 changes of plain 95% alcohol of 1 hour each, then cleared and infiltrated with paraffin. Mounted sections 12-15 µ thick were incubated in 1% silver proteinate (obtained from Serumvertrieb, Marburg, Germany)2 at 38° C. for 48 hours in the presence of 10 g. of 15 gauge copper wire per 200 ml. of solution. The slides were rinsed gently in 3 changes of distilled water for 2 minutes, 1 minute and 1 minute, respectively, and reduced in 1% hydroquinone and 5% sodium sulfite for 5 minutes. They were washed 5 minutes in tap water and 5 minutes in 2 changes of distilled water and toned 3-5 minutes in 0.25% gold chloride, rinsed in distilled water 10 seconds, reduced 10 seconds in 1 % oxalic acid, rinsed 1 minute, fixed in 5% sodium thiosulfate 5 minutes, washed in tap water through 3 changes, dehydrated, cleared and covered. All solutions were made with distilled water except where otherwise specified. The results gave good impregnation of fine nerve fibers without the usual confusing staining of reticular tissue.  相似文献   

13.
Toxicity to fish (rainbow trout or minnows) of solutions of several pure substances has been measured under controlled conditions. The substances (sodium arsenite, sodium arsenate, sodium picrate, sodium dinitrophenate, zinc sulphate, potassium chromate, potassium dichromate, ammonium chloride, and ammonium sulphate) were dissolved in distilled water, in Watford tap water, or in mixtures of distilled water and tap water.  相似文献   

14.
Two closely related pseudoisocyanins, N,N'-diethyl-6,6'-dichlorpseudoisocyanin chloride and N, N'-diethylpseudoisocyanin chloride, were tested for their metachromatic staining behavior with oxidized insulin. N,N'-diethyl-6,6-dichlorpseudoisocyanin chloride gave nonspecific metachromasia with collagen, mucus, and mast cells of adult tissues; almost all tissues of rat embryos exhibited nonspecific staining. Nonspecific reactions were rarely observed in adult or fetal tissues with the extremely labile metachromasia of N, N'-diethylpseudoiso-cyanin chloride. When oxidation time and temperatures are carefully controlled, this reagent apears to be highly specific for insulin-containing cells and can be used as a selective stain for beta cells. Paraffin sections of formalin fixed material were oxidized 45 sec at 28-29 C in freshly prepared acidified permanganic (2.5% KMnO4, 1; 5% H2SO4, 1; distilled water, 7—parts by volume), decolorized 30 sec in 5% oxalic acid, and washed 5 min in running tap water. After rinsing in 2 changes of distilled water, sections were stained 20 min in a 36 mg/100 ml aqueous solution of N, N'-diethylpseudoisocyanin chloride. Sections were then washed in running tap water until the albumen adhesive was decolorized, and mounted in Karo syrup diluted with an equal amount of distilled water. The insulin-containing cells are stained light to dark purple; all other tissue components, various shades of red. N, N'-diethylpseudoisocyanin chloride was used as a reference for evaluating the specificity of 5 commonly used empirical methods for demonstrating alpha and beta cells in pancreatic islets. Cells exhibiting pseudo isocyanin metachromasia were stained selectively by aldehyde-fuchsin, Heidenhain's azan, and chrome-hematoxylin. Aldehyde-Iuchsin was the only empirical stain tested which gave results comparable to pseudoisocyanin for clarity and definition of beta cells. After oxidation in acidified permanganate, azocarmine and phosphotungstic acid-hematoxylin differentially stained alpha cells; cells demonstrated by these two methods did not exhibit pseudoisocyanin metachromasia. This histochemical procedure can precede empirical methods which require preliminary oxidation in acidified permanganate or it can follow empirical methods which do not extract the insulin nor alter its intramolecular disulfide bonds.  相似文献   

15.
The aim of this work was to determine the potential application of dried sewage sludge as a biosorbent for removing phenol from aqueous solution. Results showed that biosorption capacity was strongly influenced by the pH of the aqueous solution with an observed maximum phenol removal at pH around 6-8. Biosorption capacity increased when initial phenol concentration was increased to 110 mg/L but beyond this concentration, biosorption capacity decreased suggesting an inhibitory effect of phenol on biomass activity. Biosorption capacity decreased from 94 to 5 mg/g when biosorbent concentration was increased from 0.5 to 10 g/L suggesting a possible competitive effect of leachable heavy metals from the sludge. The effect of Cu2+ on biosorption capacity was also observed and the results confirmed that the phenol biosorption capacity decreased when concentration of Cu2+ in the sorption medium was increased up to 15 mg/L. Desorption of phenol using distilled deionized water was less than 2% suggesting a strong biosorption by the biomass.  相似文献   

16.
This study was to examine the effects of copper on the mitochondrial non-specific pore. Three hundred sixty, one-day-old, healthy Arbor Acres (AA) broilers were fed with different concentrations (11, 110, 220, and 330?mg/kg) of copper originated from copper sulfate, tribasic copper chloride (TBCC), or copper methionine. At the indicated time point, the mitochondrial permeability transition (MPT) and copper concentration were analyzed. Results showed that under the same copper concentration, the MPT of broilers fed copper methionine was the greatest, followed by TBCC, then copper sulfate. The effects of copper on MPT were time- and dose-dependent. Furthermore, in vitro in the presence of K(+), 5?μM Cu(2+) could cause permeability transition as compared to 10?μM Cu(2+) in buffer without K(+). Taking these results together, we have shown that hepatocellular MPT may be influenced not only by source and concentration of copper or the raising period of broilers, but also by the existence of K(+).  相似文献   

17.
Dietary copper (Cu) deficiency was produced in Swiss albino mice to determine the temporal relationship between depletion of Cu and changes in the cardiovascular and nervous system. Dams were placed on a Cu-deficient diet 4 days after parturition. Half the dams were provided with deionized water and their offspring are referred to as Cu-deficient (-Cu). Half the dams were given cupric sulfate in their drinking water (20 microg Cu/mL) and their offspring are referred to as Cu-adequate (+Cu). At 6 weeks of age a sample of the -Cu mice were repleted with CuSO(4). Mice were sampled 1 day after birth and at weekly intervals for 7 weeks. Both +Cu and -Cu mice grew at the same rate: birth weight increased 16-fold at 6 weeks of age. Liver Cu more than doubled between 1 and 7 days of age. At 2 weeks of age -Cu mice were anemic (lower hematocrit and hemoglobin) and had lower liver Cu and plasma ceruloplasmin activity compared to +Cu mice. Liver Fe was not elevated in -Cu mice until 2 weeks after anemia developed. At weaning first signs of altered catecholamine metabolism included elevation of dopamine in both heart and spleen. Norepinephrine concentrations and content, in contrast, were not both lowered in -Cu mice until 5 weeks of age. Heart weight was first elevated in -Cu mice at 6 weeks of age and relative weight (mg/g body wt) at 4 weeks of age. Liver Cu concentration was lower in 1-week repleted mice than in +Cu mice. Anemia preceded the development of cardiac hypertrophy and altered catecholamine levels in -Cu mice.  相似文献   

18.
It may be hypothesised that as the bioavailable background concentration of an essential metal increases (within natural limits), the natural tolerance (to the metal) of the acclimated/adapted organisms and communities will increase. In this study the influence of acclimation to different copper concentrations on the sensitivity of the freshwater cladoceran Daphnia magna Straus was investigated. D. magna was acclimated over three generations to environmentally relevant copper concentrations ranging from 0.5 to 100 microg Cu/l (copper activity: 7.18 x 10(-15) to 3700 x 10(-12) M Cu2+). A modified standard test medium was used as culture and test medium. Medium modifications were: reduced hardness (lowered to 180 mg CaCO3/l) and addition of Aldrich humic acid at a concentration of 5 mg DOC/l (instead of EDTA). The effects of acclimation on these organisms were monitored using acute mortality assays and long-term assays in which life table parameters, copper body concentrations and energy reserves were used as test endpoints. Our results showed a two-fold increase in acute copper tolerance with increasing acclimation concentration for second and third generation organisms. Copper acclimation concentrations up to 35 microg Cu/l (80 pM Cu2+) did not affect the net reproduction and the intrinsic growth rate. The energy reserves of the acclimated daphnids revealed an Optimal Concentration range (OCEE) and concentrations between 5 and 12 microg Cu/l (0.5-4.1 pM Cu2+) and 1 and 35 microg Cu/l (0.023-80 pM Cu2+) seemed to be optimal for first and third generation daphnids, respectively. Lower and higher copper concentrations resulted in deficiency and toxicity responses. It was also demonstrated that up to 35 microg Cu/l, third generation daphnids were able to regulate their total copper body concentration. These results clearly indicate that bioavailable background copper concentrations present in culture media have to be considered in the evaluation of toxicity test results, especially when the toxicity data are used for water quality guideline derivation and/or ecological risk assessment for metals.  相似文献   

19.
Underground water in volcanic areas contains vanadium when the basalt layer exists among igneous rocks. The concentration of vanadium in drinking water sometimes exceeds 0.8 μM in these areas, however, the physiological effects of vanadium, especially non-toxic effects, at concentrations lower than 1 μM are unknown. In the present experiments, we examined the effect of pentavalent vanadium and tetravalent vanadium at 0.8 and 8.0 μM concentrations on the recognition threshold to taste substances in healthy college students. Pentavalent vanadium, ammonium vanadate, lowered the sweet taste threshold to glucose at 0.8 and 8.0 μM as well. Tetravalent vanadium, vanadium sulfate, did not alter the threshold to glucose either at 8.0 μM or at 0.8 μM. Ammonium vanadate also decreased the sweet taste threshold to l-proline at 8.0 μM. Ammonium vanadate did not influence the sour taste threshold to hydrogen chloride. Neither ammonium sulfate nor ammonium bicarbonate altered the sweet taste threshold to glucose. Therefore, the effect of ammonium vanadate on the sweet taste threshold is attained by vanadium but not by ammonium. It was concluded that pentavalent vanadium at 0.8 μM intensifies the sweet taste sense to glucose rather specifically. We have first shown the physiological effect of vanadium at the concentration of the underground water level.  相似文献   

20.
An experiment was conducted in a 3?×?3?+?1 factorial experiment based on a completely randomized design to evaluate the effects of different sources of copper on growth performance, nutrient digestibility and elemental balance in young female mink on a corn–fishmeal-based diet. Animals in the control group were fed a basal diet (containing 8.05 mg Cu/kg DM; control), which mainly consisted of corn, fish meal, meat bone meal, and soybean oil, with no copper supplementation. Minks in other nine treatments were fed basal diets supplemented with Cu from reagent-grade copper sulfate, tribasic copper chloride (TBCC) and copper methionate. Cu concentrations of experiment diets were 10, 25, and 40 mg/kg copper. A metabolism trial of 4 days was conducted during the last week of experimental feeding. Final body weight and average daily gain increased (linear and quadratic, P?<?0.05) as Cu increased in the diet; maximal growth was seen in the Cu25 group. Cu supplementation slightly improved the feed conversion rate (P?=?0.095). Apparent fat digestibility was increased by copper level (P?=?0.020). Retention nitrogen was increased by copper level (linear, P?=?0.003). Copper source had a significant effect on copper retention with Cu-Met and copper sulfate treatments retention more than TBCC treatments (P?<?0.05). Our results indicate that mink can efficiently utilize added dietary fat and that Cu plays an important role in the digestion of dietary fat in mink, and mink can efficiently utilize Cu-Met and CuSO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号