首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The release of homovanillic acid (HVA) and 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG) into CSF by the monkey spinal cord was investigated with spinal subarachnoid perfusion of 20 rhesus monkeys. The preperfusion concentration of HVA in lumbar CSF was 365 ng/ml and in cisternal CSF was 365 ng/ml, while the concentrations of MHPG were 28.3 and 40.4 ng/ml respectively. HVA originating from the spinal cord appeared in the perfusate at a rate of 2.4 and MHPG at 1.4 ng/min. Treatment with probenecid either intraperitoneally or intrathecally did not alter the rate of release into CSF of these metabolites by the spinal cord but did significantly increase the rate of appearance in the cisterna magna of HVA originating from the brain. MHPG and HVA in lumbar CSF are therefore derived in part from spinal cord metabolism.  相似文献   

2.
Portal-systemic encephalopathy (PSE) is characterized by a neuropsychiatric disorder progressing through personality changes, to stupor and coma. Previous studies have revealed alterations of serotonin and of its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in brain tissue and CSF in experimental (rat) and human PSE. Increased brain 5-HIAA concentrations could result from its decreased removal rather than to increased serotonin metabolism. In order to evaluate this possibility, CSF 5-HIAA concentrations were measured using an indwelling cisterna magna catheter technique at various times following end-to-side portacaval anastomosis in rats (the most widely used animal model of PSE) treated with probenecid, a competitive inhibitor that blocks the active transport of acid metabolites out of the brain and CSF. Following portacaval anastomosis and probenecid treatment, CSF concentrations of 5-HIAA were increased to a greater extent than in sham-operated controls. When data were expressed as per-cent baseline values, the relative increase of CSF 5-HIAA in portacaval shunted rats following probenecid treatment was not significantly different from sham-operated controls. These findings confirm that increased 5-HIAA in the CNS in experimental PSE results from increased 5HT metabolism or turnover and that the probenecid-sensitive acid metabolite carrier is intact in PSE.  相似文献   

3.
K M Meyers  R G Schaub 《Life sciences》1974,14(10):1895-1906
Serotonin (5-HT) content in brain and whole blood, 5-hydroxy-indoleacetic acid (5-HIAA) concentration in urine and cisternal cerebrospinal fluid (CSF) were determined in normal dogs and Scottish terrier dogs affected with an inherited motor disorder. In addition, the increases in CSF 5-HIAA following probenecid administration were measured in affected and nonaffected dogs at rest, during diethyl ether anesthesia and following p-chloro-phenylalanine administration. There was not a significant difference between the two groups of dogs in any of the mentioned measurements. These data suggest that the primary biochemical defect does not directly involve 5-HT.  相似文献   

4.
Concentrations of 5-hydroxyindoleacetic acid (5-HIAA) were determined in the lumbar cerebrospinal fluid (CSF) of patients after head injury. Unconscious patients showed after the fifth posttraumatic day no significant difference with the control group. The conscious patients showed significantly decreased 5-HIAA levels compared with the control group (following probenecid administration) as well as compared with the unconscious patients. These results suggest a relatively high cerebral serotonin turnover during the state of unconsciousness after head injury in man.  相似文献   

5.
A simple technique is described for repeated sampling of cerebrospinal fluid (CSF) from the freely moving rat and its use in the determinations of 5-hydroxytryptamine (5-HT) turnover validated. A catheter, constructed from polyethylene tubing (PP10) was implanted via a cranial approach into the cisterna magna and x-ray studies confirmed that the catheter avoided the cerebellum. 5-HT turnover was determined from the rate of rise of 5-hydroxyindoleacetic acid (5-HIAA) in both CSF and brain following an injection of probenecid (200 mg/kg i.p.). Concentrations of 5-HIAA, 5-HT and tryptophan were determined by high pressure liquid chromatography. Turnover values for individual rats were obtained using CSF samples. After p-chlorophenylalanine treatment (when brain 5-HT was depleted by 43%) 5-HT turnover values obtained were comparably reduced whether determined from CSF (-67%) or brain (-74%). Thus differences of rat brain 5-HT turnover are proportionately reflected by CSF measurements. The method for sampling of CSF should be applicable in a wide range of pharmacological and physiological situations.  相似文献   

6.
The effects of 1-h exposure to hypercapnia (PaCO2, 90-110 MMHg) on cerebral indole amine metabolism were studied in rats by measurement of cerebral hemisphere contents of tryptophan, 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA), 5-HIAA content was increased after 1-h exposure to hypercapnia, whereas tryptophan, 5-HTP, and 5-HT remained unchanged from control. The accumulation of 5-HTP after decarboxylase inhibition with 3-hydroxybenzyl hydrazine was increased in hypercapnic rats and indicated an increased activity of tryptophan hydroxylase. During the 1-h exposure to hypercapnia there was increased accumulation of 5-HT after monoamine oxidase inhibition with pargyline and increased accumulation of 5-HIAA arter probenecid. The results indicate an increased synthesis and degradation of indole amines in acute hypercapnia.  相似文献   

7.
Orexin A (ORX-A) is implicated in the regulation of various physiological processes, including sleep/wake cycles and reward/motivation. The hypothalamic ORX-A neurons project throughout the brain and spinal cord. In the present study we established and compared ORX-A levels in lumbar and ventricular cerebrospinal fluid (CSF) samples, drawn from idiopathic normal pressure hydrocephalus (INPH) patients, during respectively, lumbar puncture and shunt placement. Ventricular and lumbar CSF levels of total protein and of the dopamine, serotonin and norepinephrine metabolites HVA, 5-HIAA and MHPG respectively, were also estimated. ORX-A was quantified using a commercially available radioimmunoassay kit. Neurotransmitter metabolites were quantified by high performance liquid chromatography. Expectedly, HVA and 5-HIAA levels were significantly higher and total protein levels lower in ventricular compared to lumbar CSF while there were no differences in MHPG levels. However, in contrast to HVA and 5-HIAA and similar to total protein, lumbar ORX-A levels were significantly higher than ventricular levels. The higher lumbar compared to ventricular ORX-A levels may reflect elevated contributions from the spinal cord. The finding of a ventriculo-lumbar difference for ORX-A should be considered in studies utilizing its CSF levels in assessing Orexin system status.  相似文献   

8.
Sprague-Dawley rats were stressed by immobilization from 30 to 300 minutes and the effects on serotonin (5-HT) and 5-hydroxy-indoleacetic acid (5-HIAA) content were determined in the cerebral cortex, diencephalon, striatum, hippocampus and the brain stem. In a subsequent study 5-HT turnover rate in these brain areas was estimated by measuring 5-HIAA accumulation 0, 30, 60 and 90 minutes after probenecid. The content of 5-HIAA and the turnover rate of 5-HT were significantly increased in the cerebral cortex shortly after the onset of immobilization. The content of 5-HIAA in the brainstem was increased by immobilization although 5-HT turnover rate was not increased. Short term increases in 5-HIAA content were observed in the striatum and hippocampus. However, no significant changes in 5-HT turnover rate were observed in either of these 2 brain areas. Immobilization did not affect 5-HIAA content or 5-HT turnover in the diencephalon. The sensitivity of the serotonergic system in the cerebral cortex to immobilization stress suggests that this brain region could be used in future studies of the interrelationships between stress and the brain serotonergic system.  相似文献   

9.
The present study was designed to investigate whether lungs can utilize 5-hydroxytryptophan (5-HTP), formed elsewhere and transported, for the synthesis of 5-hydroxytryptamine (5-HT). [14C]5-HTP uptake was 7.7 +/- 1.1 and 3.9 +/- 0.2% by rabbit and rat lungs, respectively, after 1 h of perfusion with 10 microM [14C]5-HTP. There was an increase in the lung uptake of [14C]5-HTP when the lungs were preperfused with 0.5 mM chlorphentermine (CP) and the uptake was low when the lungs were preperfused with 0.1 mM hydroxybenzylhydrazine dihydrochloride (HBH). The perfusate concentration of 5-hydroxyindole acetic acid (5-HIAA) increased significantly (3-4 micrograms/100 mL) during rabbit lung perfusion with 10 microM [14C]5-HTP and this did not change significantly when the lungs were preperfused with 0.5 mM CP. However, 5-HT increased with time in the perfusate. 5-HT, but not 5-HIAA, was detected in the perfusate and increased with time of perfusion when the rat lungs were perfused either with 10 microM 5-HTP or with 0.5 mM CP and 10 microM 5-HTP. However, no metabolites were detected in either the rabbit lung or rat lung perfusates when they were preperfused with 0.1 mM HBH. Lung contents of 5-HT and 5-HIAA were significantly higher in the rat lungs and only 5-HIAA increased in rabbit lungs after 1 h of perfusion with 10 microM 5-HTP. Preperfusion with 0.5 mM CP resulted in a greater increase in the 5-HT content of both rabbit and rat lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Turnover of dopamine (DA), serotonin [5-hydroxytryptamine (5-HT)], and their metabolites has been measured in adult and aged rats. Turnover rates of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxy-3-indoleacetic acid (5-HIAA) have been assayed from the disappearance rates after blocking by pargyline inhibition of monoamine oxidase (MAO) and from the accumulation rates by probenecid inhibition of the probenecid-sensitive transport system. DA and 5-HT turnover rates have been measured as accumulation rates of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively, after central decarboxylase inhibition by 3-hydroxybenzylhydrazine (NSD-1015) and as accumulation rates of DA and 5-HT after pargyline inhibition of MAO. The DA turnover rate after NSD-1015 was 23.9% lower in aged rats than in adults, whereas after pargyline there was no significant difference between the two age groups. The HVA fractional rate constant and turnover after pargyline were lower in aged rats than in adults, and HVA turnover after probenecid was higher in aged rats than in adults. The DOPAC-HVA pathway seems to be reinforced at the expense of DOPAC conjugation. In aged and adult rats whose 5-HT steady-state levels were not statistically different, the 5-HT turnover rate after pargyline and NSD-1015 treatment was lower in aged rats than in adults. An increase of 5-HIAA levels after pargyline and probenecid treatment in aged rats could be due to the handling stress.  相似文献   

11.
5-Hydroxytryptamine (5-HT) turnover and dopamine (DA) turnover values were obtained in individual conscious rats by measuring the rates of accumulation of 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in cisternal CSF samples taken from each rat at 0, 30, and 60 min after probenecid (200 mg/kg i.p.) administration. In a separate experiment, 5-HT and DA turnover values were determined in CSF, striatum, and rest of brain of groups of rats killed 0, 30, or 60 min after probenecid. Whole brain turnover values were calculated from striatal and rest of brain values. Mean turnover values using CSF were comparable with both procedures. DA turnover values were greater when based on total (i.e., free + conjugated) DA metabolites than when based on free metabolites. After partial inhibition of monoamine synthesis with the decarboxylase inhibitor DL-alpha- monofluoromethyl -DOPA ( MFMD , 100 mg/kg p.o.) DA and 5-HT turnover values were comparably reduced in whole brain, rest of brain, and CSF but more markedly reduced in the striatum. Mean DA and 5-HT turnover values obtained using CSF were similar with probenecid doses over the range 150-250 mg/kg i.p. but were variable when repeatedly determined in the same rats after administration of 200 mg/kg probenecid. Results in general show that the CSF procedure may be used to determine concurrently both 5-HT and DA turnover (when estimated from the sum of total but not free metabolites) and that it provides a good index of whole brain turnover of these transmitters in the conscious individual rat.  相似文献   

12.
应用推挽灌流技术、去甲肾上腺素(NA)放射酶学法和亮-脑啡肽放射免疫法观察不同脑区 NA 和脊髓背角亮-脑啡肽的释放。应用分子筛柱层析分离家兔不同脑区的5-羟色胺(5-HT)和5-羟吲哚乙酸(5-HIAA),并对它们进行荧光微量测定。以此来阐明针刺镇痛时 NA、5-HT 和亮-脑啡肽在下行抑制中的作用。1.家兔电针20 min,痛阈显著提高,此时中脑导水管周围灰质(PAG)和中缝大核(NRM)的 NA 释放显著减少,而 Al 核团和脊髓背角的 NA释放显著增加。2.电针镇痛时,PAG、延脑中缝核区和脊髓的5-HT 和5-HIAA 含量均有显著增加,除 PAG 外,这种增加的出现较 NA 为晚。提示可能在针刺镇痛的下行抑制中,NA 的参予较5-HT 为早。3.针刺镇痛时脊髓背角亮-脑啡肽的释放也明显增加。  相似文献   

13.
3,4-Dihydroxyphenylethylamine (DA, dopamine) and 5-hydroxytryptamine (5-HT) turnover values were determined in freely moving male rats by measuring the rates of accumulation of the acidic metabolites of the above transmitters, i.e., 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in cisternal cerebrospinal fluid (CSF) samples after probenecid (200 mg/kg i.p.) administration. Determinations on samples before and after acid hydrolysis showed that the latter procedure was necessary for DA turnover determination. Thus whereas total (DOPAC + HVA) increased linearly with time after probenecid, free (DOPAC + HVA) did not. This was because the percentage of DOPAC + HVA in conjugated form increased with time. Determinations on a group of 28 rats during the dark (red light) period showed that cisternal amine metabolite concentrations before probenecid injection did not parallel turnover values. This was probably because individual differences in metabolite egress strongly affect the pre-probenecid values. The poor correlations between CSF tryptophan and 5-HT turnover suggested that differences of brain tryptophan concentration were not major determinants of differences of brain 5-HT metabolism within this group of normal rats. Considering that the rats were of similar weight and that the turnover values were all determined at approximately the same time of day, the three- to fourfold ranges of the turnover values are remarkable. The positive correlation between the DA and 5-HT turnovers of individual rats suggests the existence of common effects on DA and 5-HT turnover in normal rats.  相似文献   

14.
The present study was undertaken to determine cerebrospinal fluid (CSF) and brain levels of norepinephrine (NE), serotonin (5-HT) and their metabolites--3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA) and 5-hydroxyindole-3-acetic acid (5-HIAA)--in rats pretreated with 6-hydroxydopamine (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT). In the 6-OHDA pretreated rats, both CSF and brain concentrations of NE, DOPAC and HVA sustained significant decreases as compared with those in non-treated rats. Positive and significant correlations between CSF and brain levels were observed in respect to NE, DOPAC and HVA. In 5,7-DHT pretreated rats, both CSF and brain concentrations of 5-HT and 5-HIAA were significantly decreased. A positive and significant correlation between CSF and brain levels in respect to 5-HT and 5-HIAA was observed. Further studies were carried out to determine ACh levels of both the CSF and the brain in microspheres (MS)-treated rats, which are used as a model of microembolization. The CSF ACh concentrations in MS-treated groups were significantly decreased as compared with those in non-treated rats. The brain ACh contents also tended to decrease in this group. A positive and significant correlation was observed between CSF and brain levels of ACh. These findings suggest that NE, 5-HT and ACh concentrations in the CSF are direct indications of central noradrenergic, serotonergic and cholinergic nerve activity, respectively.  相似文献   

15.
Cerebral acidic metabolites and penicillin are organic anions which can be carried by active transport into capillaries of the central nervous system (CNS). However, it is generally believed that these metabolites are mainly delivered from CNS to cerebrospinal fluid (CSF) and eliminated by CSF circulation over cortex and its absorption into dural venous sinuses. To test this hypothesis we studied fate of penicillin ([3H]benzylpenicillin) in the CSF under control conditions and when its active transport was blocked by probenecid. After application of penicillin into cisterna magna of control dogs, it is distributed only in traces to lumbar, ventricular and cortical CSF. However, when active transport of penicillin across capillary wall is blocked by probenecid, its disappearance from cisterna is slowed down and its distribution is greatly enhanced so that at 300 min penicillin concentrations in cisternal, lumbar and cortical CSF approach or equal each other. Disappearance of penicillin from cisternal CSF shows a single exponential course (half-time 30 min) in control, while in probenecid pretreated dogs this is a slow multiexponential process. The results indicate that the active transport across capillary wall in CNS, but not generally postulated unidirectional CSF circulation over cortex and its absorption into dural venous sinuses, is instrumental in elimination of cerebral acidic metabolites and in such a way homeostasis in brain and cerebrospinal fluid is maintained.  相似文献   

16.
The effects of L-tryptophan (50 mg/kg i.p.) on extracellular concentrations of tryptophan and the 5-hydroxytryptamine (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in the rat striatum and cerebellum, regions with rich and poor 5-HT innervation, respectively. Determinations were on perfusates from dialysis probes in the brains of conscious, freely moving rats. The pharmacokinetic profiles of dialysate tryptophan after tryptophan load (peak concentration, time to peak concentration, area under curve, and half-life) in the two regions did not differ significantly. The dialysate 5-HIAA concentration in the striatum rose two- to threefold after the administration of tryptophan. Therefore, as 5-HIAA was undetectable in the cerebellum either before or after the administration of tryptophan, the increase of 5-HIAA in the striatum is unlikely to depend appreciably on its production within the cerebral vasculature or outside the brain or on its entering the striatum through a blood-brain barrier damaged by placement of the dialysis probe. Overall, the findings strengthen previous evidence that extracellular 5-HIAA concentrations determined by cerebral dialysis are a valid measure of the metabolism of 5-HT of brain neuronal origin.  相似文献   

17.
A procedure is described for simultaneous estimation of tryptophan (TP), 5-hydroxytryptophan (5-OHTP), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), N-acetyl 5-hydroxytryptamine (NA5-HT) and N-acetyldopamine (NADA) using high performance liquid chromatography with coulometric electrochemical detection. The procedure has been used to determine the distribution of these compounds in the central nervous system of the American cockroach, Periplaneta americana. The ratio of TP:5-HT is greatest in the cerebral ganglia (6.5) with lesser ratios evident in the thoracic ganglia (15.5-18.9) and abdominal ganglia (9.6-11.2). Relatively low concentrations of 5-OHTP and NA5-HT were observed in the cerebral ganglia whereas 5-HIAA was not detected. Incubation of ganglia resulted in increased concentrations of NA5-HT. Reserpine reduced levels of 5-HT and NADA whereas probenecid caused a marked reduction in TP and slight elevation of NADA levels. No MAO activity was detected in the central nervous system.  相似文献   

18.
The tripeptide Tyr-Gly-Gly (YGG), representing the product of enkephalin hydrolysis by enkephalinase (EC 3.4.24.11), was characterized and its levels measured in spinal cord perfusates of halothane-anaesthetized rats. During noxious pinching of the muzzle, which is known to trigger enkephalin release, YGG levels were enhanced more markedly and for longer than were those of [Met5]enkephalin (YGGFM), in the same samples. By contrast, neither YGG nor YGGFM levels were affected by pinching the tail. Treatment with carbaphethiol, a parenterally-active aminopeptidase inhibitor, markedly increased YGG levels and lengthened the duration of the increase produced by pinching the muzzle. Treatment with acetorphan, a parenterally-active enkephalinase inhibitor, given alone or in combination with carbaphethiol, completely prevented the rise in YGG triggered by noxious stimulation. By contrast, [Met5]enkephalin levels in the perfusates were increased by the combined administration of the two peptidase inhibitors but these levels were not further enhanced by noxious stimulation. Thus, spinal cord YGG appears to be formed under the influence of enkephalinase and to constitute a sensitive index of enkephalin release.  相似文献   

19.
Brain and cerebrospinal fluid (CSF) levels of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were simultaneously measured in 48 individuals at autopsy. Concentrations of 5-HIAA and HVA in the cerebral cortex were positively correlated with their levels in the CSF for the same individual. Additionally a positive correlation was observed between postmortem CSF levels of 5-HIAA and HVA and a significant concentration gradient for both metabolites was observed in serial fractions of CSF. These findings suggest that determinations of 5-HIAA and HVA in CSF from living individuals may reflect brain metabolite levels as well as the functional activity of these specific neuronal systems.  相似文献   

20.
The effects of valproic acid (500 mg/kg, ip, 1 h prior to testing) on indole amine metabolism were studied in rats by measurement of the contents of tryptophan, 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the cerebral hemisphere. Tryptophan and 5-HIAA levels were increased, whereas 5-HTP and 5-HT remained unchanged. Furthermore, valproic acid failed to alter the levels of 5-HTP and DOPA, 5-HT and DA, and 5-HIAA in animals pretreated, respectively, with 3-hydroxybenzyl hydrazine (a decarboxylase inhibitor), pargyline (a monoamine oxidase inhibitor), or probenecid (a compound which blocks 5-HIAA transport out of the brain and cerebrospinal fluid). These results militate against the possibility that valproic acid alters the rate of tryptophan hydroxylation or the synthesis of 5-HT. However they do support the concept that valproic acid increases brain 5-HIAA by inhibition of the transport mechanism which removes 5-HIAA from the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号