首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent technical advances in the field of quantitative proteomics have stimulated a large number of biomarker discovery studies of various diseases, providing avenues for new treatments and diagnostics. However, inherent challenges have limited the successful translation of candidate biomarkers into clinical use, thus highlighting the need for a robust analytical methodology to transition from biomarker discovery to clinical implementation. We have developed an end-to-end computational proteomic pipeline for biomarkers studies. At the discovery stage, the pipeline emphasizes different aspects of experimental design, appropriate statistical methodologies, and quality assessment of results. At the validation stage, the pipeline focuses on the migration of the results to a platform appropriate for external validation, and the development of a classifier score based on corroborated protein biomarkers. At the last stage towards clinical implementation, the main aims are to develop and validate an assay suitable for clinical deployment, and to calibrate the biomarker classifier using the developed assay. The proposed pipeline was applied to a biomarker study in cardiac transplantation aimed at developing a minimally invasive clinical test to monitor acute rejection. Starting with an untargeted screening of the human plasma proteome, five candidate biomarker proteins were identified. Rejection-regulated proteins reflect cellular and humoral immune responses, acute phase inflammatory pathways, and lipid metabolism biological processes. A multiplex multiple reaction monitoring mass-spectrometry (MRM-MS) assay was developed for the five candidate biomarkers and validated by enzyme-linked immune-sorbent (ELISA) and immunonephelometric assays (INA). A classifier score based on corroborated proteins demonstrated that the developed MRM-MS assay provides an appropriate methodology for an external validation, which is still in progress. Plasma proteomic biomarkers of acute cardiac rejection may offer a relevant post-transplant monitoring tool to effectively guide clinical care. The proposed computational pipeline is highly applicable to a wide range of biomarker proteomic studies.  相似文献   

2.
Validation of two HPLC assays for the quantitation of carboplatin in human plasma ultrafiltrate is described. Both assay methods employed a YMC ODS-AQ 3.9×150 mm (3 μm) column for the chromatographic separation. The first method utilized direct UV detection, the second method utilized UV detection following post-column derivatization with sodium bisulfite. Structural analogues of carboplatin were synthesized and used as internal standards for the assays. With direct UV detection, sample clean-up using solid-phase extraction on amino cartridges was required prior to injection, with extraction recoveries ranging from 80 to 90%. This extraction procedure was not necessary with the post-column reaction method, which employed a more selective analytical wavelength. Unfortunately, instability of the post-column reagent was a problem and led to greater variability in predicted concentration values. For standard curves, a weighted (1/y2) regression approach was used for plots of peak area or peak height ratio (carboplatin/internal standard) vs. carboplatin concentration. The limit of detection of both assays was 0.025 μg/ml and both were validated for carboplatin concentrations from 0.05 to 40 μg/ml. Accuracy and precision data were generated using three batches of validation samples, each batch consisting of a standard curve and five sets of quality control samples. Stability of carboplatin in blood, plasma, plasma ultrafiltrate, and reconstituted extracts was evaluated. The assay methods were employed for the pharmacokinetic analysis of blood samples drawn from a pediatric patient that received a 400 mg/m2 dose of carboplatin.  相似文献   

3.
Numerous methods have been developed to measure the presence of macromolecular species in a sample; however, the number of methods that detect functional activity or modulators of that activity is more limited. To address this limitation, an approach was developed that uses the optical detection of nanoparticles as a measure of enzyme activity. Nanoparticles are increasingly being used as biological labels in static binding assays; here, we describe their use in a release assay format, where the enzyme-mediated liberation of individual nanoparticles from a surface is measured. A double-stranded fragment of DNA is used as the initial tether to bind the nanoparticles to a solid surface. The nanoparticle spatial distribution and number are determined using dark-field optical microscopy and digital image capture. Site-specific cleavage of the DNA tether results in nanoparticle release. The methodology and validation of this approach for measuring enzyme-mediated, individual DNA cleavage events, rapidly, with high specificity, and in real-time are described. This approach was used to detect and discriminate between nonmethylated and methylated DNA, and demonstrates a novel platform for high-throughput screening of modulators of enzyme activity.  相似文献   

4.
Recent circulating tumor DNA (ctDNA) research has demonstrated its potential as a non-invasive biomarker for cancer. However, the deployment of ctDNA assays in routine clinical practice remains challenging owing to variability in analytical approaches and the assessment of clinical significance. A well-developed, analytically valid ctDNA assay is a prerequisite for integrating ctDNA into cancer management, and an appropriate analytical technology is crucial for the development of a ctDNA assay. Other determinants including pre-analytical procedures, test validation, internal quality control (IQC), and continual proficiency testing (PT) are also important for the accuracy of ctDNA assays. In the present review, we will focus on the most widely used ctDNA detection technologies and the key quality management measures used to assure the accuracy of ctDNA assays. The aim of this review is to provide useful information for technology selection during ctDNA assay development and assure a reliable test result in clinical practice.  相似文献   

5.
Uropathogenic Escherichia coli (UPEC) and Staphylococcus saprophyticus (S. saprophyticus) are responsible for the majority of community-acquired urinary tract infections (UTI). Agar plating, a gold standard for detection of bacterial uropathogens, is labor intensive, limited for distinguishing between environmental contaminants and pathogens, and fails to effectively detect mixed infections. A reliable method for specific and sensitive quantitative assessment of infections would allow cost-effective evaluation of large numbers of experimental samples. A methodology such as quantitative PCR (qPCR) addresses the limitations of agar plating. We developed and validated highly specific and sensitive qPCR assays to assist researchers in the evaluation of potential vaccines and interventions in preclinical models of UPEC and S. saprophyticus UTI. The developed UPEC PCR targeted a highly conserved region of the UPEC hemolysin D (hlyD) gene that reproducibly detected type strains CFT073 and J96 over a 9 log range with high precision. To quantify S. saprophyticus genomes, a separate qPCR assay targeting the Trk transport gene was developed with an 8 log range. Neither assay detected bacterial species predicted to be sample contaminants. Using our optimized workflow that includes automated steps, up to 200 urine or tissue samples can be processed in as few as 3 h. Additionally, sequence comparisons of our primers and probe to other UTI bacterial strains indicated the broad applicability of these assays. These optimized qPCR assays provide a cost-effective and time-saving method for quantification of bacterial burdens in tissues and body fluids to assess the effectiveness of candidate vaccines or interventions.  相似文献   

6.
Although a series of biomarkers are widely used for the estimation of oxidative damage to biomolecules, validations of the analytical methods have seldom been presented. Formal validation, that is the study of the analytical performances of a method, is however recognized as the best safeguard against the generation and publication of data with low reliability. Classical validation parameters were investigated for the determination of an oxidative stress biomarker, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG) in cellular DNA, by high-performance liquid chromatography coupled to amperometric detection (HPLC-EC); this modified base is increasingly considered as a marker of oxidative damage to DNA, but many questions are still raised on the analytical methods in use. Upon a rigorous statistical evaluation of the quality criteria currently required for assays in biological media, including selectivity, linearity, accuracy, repeatability, sensitivity, limits of detection and quantification, ruggedness and storage at different stop points in the procedure, the HPLC-EC assay method is found mostly reliable.

The present validation attempt demonstrates that (i) the HPLC-EC assay of 8-oxo-dG provides consistent data allowing to reliably detect an increase of this biomarker in cellular DNA; (ii) a harsh oxidative stress does not hinder the enzymatic digestion of DNA by nuclease P1; and (iii) the analytical results must be expressed relative to the internal standard dG which significantly improves both repeatability and sensitivity. Whereas the described assay minimizes the artifactual production of the analyte from processing and storage, this cannot be totally ruled out; the true 8-oxo-dG base levels still lack a definitive assay method, which remains a considerable analytical challenge and the object of controversy.  相似文献   

7.
Clinical trials are governed by an increasingly stringent regulatory framework, which applies to all levels of trial conduct. Study critical immunological endpoints, which define success or failure in early phase clinical immunological trials, require formal pre-trial validation. In this case study, we describe the assay validation process, during which the sensitivity, and precision of immunological endpoint assays were defined. The purpose was the evaluation of two multicentre phase I/II clinical trials from our unit in Southampton, UK, which assess the effects of DNA fusion vaccines on immune responses in HLA-A2+ patients with carcinoembryonic antigen (CEA)-expressing malignancies and prostate cancer. Validated immunomonitoring is being performed using ELISA and IFNγ ELISPOTs to assess humoral and cellular responses to the vaccines over time. The validated primary endpoint assay, a peptide-specific CD8+ IFNγ ELISPOT, was tested in a pre-trial study and found to be suitable for the detection of low frequency naturally occurring CEA- and prostate-derived tumour-antigen-specific T cells in patients with CEA-expressing malignancies and prostate cancer. This paper is a Focussed Research Review based on a presentation given at the Sixth Annual Meeting of the Association for Immunotherapy of Cancer (CIMT), held in Mainz, Germany, 15–16 May 2008.  相似文献   

8.
Although a series of biomarkers are widely used for the estimation of oxidative damage to biomolecules, validations of the analytical methods have seldom been presented. Formal validation, that is the study of the analytical performances of a method, is however recognized as the best safeguard against the generation and publication of data with low reliability. Classical validation parameters were investigated for the determination of an oxidative stress biomarker, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in cellular DNA, by high-performance liquid chromatography coupled to amperometric detection (HPLC-EC); this modified base is increasingly considered as a marker of oxidative damage to DNA, but many questions are still raised on the analytical methods in use. Upon a rigorous statistical evaluation of the quality criteria currently required for assays in biological media, including selectivity, linearity, accuracy, repeatability, sensitivity, limits of detection and quantification, ruggedness and storage at different stop points in the procedure, the HPLC-EC assay method is found mostly reliable. The present validation attempt demonstrates that (i) the HPLC-EC assay of 8-oxo-dG provides consistent data allowing to reliably detect an increase of this biomarker in cellular DNA; (ii) a harsh oxidative stress does not hinder the enzymatic digestion of DNA by nuclease P1; and (iii) the analytical results must be expressed relative to the internal standard dG which significantly improves both repeatability and sensitivity. Whereas the described assay minimizes the artifactual production of the analyte from processing and storage, this cannot be totally ruled out; the true 8-oxo-dG base levels still lack a definitive assay method, which remains a considerable analytical challenge and the object of controversy.  相似文献   

9.
H L Bank  M K Schmehl 《Cryobiology》1989,26(3):203-211
The selection of appropriate viability assays is critical in evaluating the efficacy of any cryopreservation procedure. The appropriateness of a given assay depends on the specific tissue and the function which is being optimized. Although a broad range of "viability" assays have been used, these assays can be classified in seven principle groups: (i) Morphological procedures, including routine histology, surface antigen localization, and transmission electron or scanning microscopy; (ii) proliferation studies; (iii) metabolic assays; (iv) implantation; (v) mechanical assays; (vi) motility; and (vii) DNA or RNA synthetic assays. Regardless of the class of assay, each assay may be further characterized as qualitative, quantitative, or quantal and each type may vary in the degree of subjectivity. In selecting a specific viability assay, biological variability, assay bias, and the statistical probability of both Type I and Type II errors should be considered crucial. Here we discuss a number of critical factors involved in validating viability assays, including accuracy, precision, standardization, specificity, sensitivity, selection of statistical methodology, and range of the assay.  相似文献   

10.
Botanical drug products have batch-to-batch quality variability due to botanical raw materials and the current manufacturing process. The rational evaluation and control of product quality consistency are essential to ensure the efficacy and safety. Chromatographic fingerprinting is an important and widely used tool to characterize the chemical composition of botanical drug products. Multivariate statistical analysis has showed its efficacy and applicability in the quality evaluation of many kinds of industrial products. In this paper, the combined use of multivariate statistical analysis and chromatographic fingerprinting is presented here to evaluate batch-to-batch quality consistency of botanical drug products. A typical botanical drug product in China, Shenmai injection, was selected as the example to demonstrate the feasibility of this approach. The high-performance liquid chromatographic fingerprint data of historical batches were collected from a traditional Chinese medicine manufacturing factory. Characteristic peaks were weighted by their variability among production batches. A principal component analysis model was established after outliers were modified or removed. Multivariate (Hotelling T 2 and DModX) control charts were finally successfully applied to evaluate the quality consistency. The results suggest useful applications for a combination of multivariate statistical analysis with chromatographic fingerprinting in batch-to-batch quality consistency evaluation for the manufacture of botanical drug products.  相似文献   

11.
Polyamides (PAs) are distamycin-type ligands of DNA that bind the minor groove and are capable of sequence selective recognition. This capability provides a viable route to their development as therapeutics. Presented here is a simple and convenient fluorescence assay for PA-DNA binding. PAs are titrated into a sample of a hairpin DNA featuring a TAMRA dye attached to an internal dU near the PA binding site. In a study of 6 PAs, PA binding leads to a steady reproducible decrease in fluorescence intensity that can be used to generate binding isotherms. The assay works equally well with both short (6- to 8-ring) and long (14-ring) PAs, and K(d) values ranging from approximately 1 nM to at least 140 nM were readily obtained using a simple monochromator or filter configuration. Competition assays provide a means to assessing possible dye interference, which can be negligible. The assay can also be used to determine PA extinction coefficients and to measure binding kinetics; thus, it is an accessible and versatile tool for the study of PA properties and PA-DNA interactions.  相似文献   

12.
We have developed an integrated strategy for targeted resequencing and analysis of gene subsets from the human exome for variants. Our capture technology is geared towards resequencing gene subsets substantially larger than can be done efficiently with simplex or multiplex PCR but smaller in scale than exome sequencing. We describe all the steps from the initial capture assay to single nucleotide variant (SNV) discovery. The capture methodology uses in-solution 80-mer oligonucleotides. To provide optimal flexibility in choosing human gene targets, we designed an in silico set of oligonucleotides, the Human OligoExome, that covers the gene exons annotated by the Consensus Coding Sequencing Project (CCDS). This resource is openly available as an Internet accessible database where one can download capture oligonucleotides sequences for any CCDS gene and design custom capture assays. Using this resource, we demonstrated the flexibility of this assay by custom designing capture assays ranging from 10 to over 100 gene targets with total capture sizes from over 100 Kilobases to nearly one Megabase. We established a method to reduce capture variability and incorporated indexing schemes to increase sample throughput. Our approach has multiple applications that include but are not limited to population targeted resequencing studies of specific gene subsets, validation of variants discovered in whole genome sequencing surveys and possible diagnostic analysis of disease gene subsets. We also present a cost analysis demonstrating its cost-effectiveness for large population studies.  相似文献   

13.
Fluorescence spectroscopy in combination with multivariate statistical methods was employed as a tool for monitoring the manufacturing process of pertactin (PRN), one of the virulence factors of Bordetella pertussis utilized in whopping cough vaccines. Fluorophores such as amino acids and co-enzymes were detected throughout the process. The fluorescence data collected at different stages of the fermentation and purification process were treated employing principal component analysis (PCA). Through PCA, it was feasible to identify sources of variability in PRN production. Then, partial least square (PLS) was employed to correlate the fluorescence spectra obtained from pure PRN samples and the final protein content measured by a Kjeldahl test from these samples. In view that a statistically significant correlation was found between fluorescence and PRN levels, this approach could be further used as a method to predict the final protein content.  相似文献   

14.
RNA external standards, although important to ensure equivalence across many microarray platforms, have yet to be fully implemented in the research community. In this article, a set of unique RNA external standards (or RNA standards) and probe pairs that were added to total RNA in the samples before amplification and labeling are described. Concentration–response curves of RNA external standards were used across multiple commercial DNA microarray platforms and/or quantitative real-time polymerase chain reaction (RT–PCR) and next-generation sequencing to identify problematic assays and potential sources of variation in the analytical process. A variety of standards can be added in a range of concentrations spanning high and low abundances, thereby enabling the evaluation of assay performance across the expected range of concentrations found in a clinical sample. Using this approach, we show that we are able to confirm the dynamic range and the limit of detection for each DNA microarray platform, RT–PCR protocol, and next-generation sequencer. In addition, the combination of a series of standards and their probes was investigated on each platform, demonstrating that multiplatform calibration and validation is possible.  相似文献   

15.
The measurement of multiple antigens in a single sample poses clinical and methodological challenges. Here we describe the validation of a multiplexed sandwich enzyme-linked immunosorbent assay (ELISA) array (microELISA) of nine antigens. The antigens tested simultaneously were: alpha-fetoprotein (AFP), prostate specific antigen (PSA), carcinoembryonic antigen (CEA), cancer antigen 125 (CA 125), CA 15-3, CA 19-9, beta-human chorionic gonadotropin (beta-hCG), luteinizing hormone (LH), and follicle stimulating hormone (FSH). At least 44 clinical samples were tested for each antigen. microELISA results for the nine antigens were then compared with clinical laboratory results obtained for the same antigens in individual chemiluminescent immunoassays. The microELISA had a coefficient of variation (cv) of 7.3% within an assay and 12.6% for assays run at different times. A statistical comparison of results from the microELISA with results from the clinical laboratory showed that the assays had correlation coefficients ranging from 0.99 to 0.76, and Deming regression demonstrated that four of the nine assays were high-quality assays and not statistically different to the individual assays. To determine if the differences in the assays were due to methodology, the microELISA was also compared with conventional ELISAs using identical antibodies and reagents. Deming regression demonstrated that five of the eight assays were high-quality, indicating that a poor correlation between a microELISA and an individual immunoassay are partly due to antibody differences.  相似文献   

16.
A 30-year-old manufacturing process for the biologic product l-asparaginase from the plant pathogen Erwinia chrysanthemi was rigorously qualified and validated, with a high level of agreement between validation data and the 6-year process database. l-Asparaginase exists in its native state as a tetrameric protein and is used as a chemotherapeutic agent in the treatment regimen for Acute Lymphoblastic Leukaemia (ALL). The manufacturing process involves fermentation of the production organism, extraction and purification of the l-asparaginase to make drug substance (DS), and finally formulation and lyophilisation to generate drug product (DP). The extensive manufacturing experience with the product was used to establish ranges for all process parameters and product quality attributes. The product and in-process intermediates were rigorously characterised, and new assays, such as size-exclusion and reversed-phase UPLC, were developed, validated, and used to analyse several pre-validation batches. Finally, three prospective process validation batches were manufactured and product quality data generated using both the existing and the new analytical methods. These data demonstrated the process to be robust, highly reproducible and consistent, and the validation was successful, contributing to the granting of an FDA product license in November, 2011.  相似文献   

17.
Vaccines that interrupt malaria transmission are of increasing interest and a robust functional assay to measure this activity would promote their development by providing a biologically relevant means of evaluating potential vaccine candidates. Therefore, we aimed to qualify the standard membrane-feeding assay (SMFA). The assay measures the transmission-blocking activity of antibodies by feeding cultured P. falciparum gametocytes to Anopheles mosquitoes in the presence of the test antibodies and measuring subsequent mosquito infection. The International Conference on Harmonisation (ICH) Harmonised Tripartite Guideline Q2(R1) details characteristics considered in assay validation. Of these characteristics, we decided to qualify the SMFA for Precision, Linearity, Range and Specificity. The transmission-blocking 4B7 monoclonal antibody was tested over 6 feeding experiments at several concentrations to determine four suitable concentrations that were tested in triplicate in the qualification experiments (3 additional feeds) to evaluate Precision, Linearity and Range. For Specificity, 4B7 was tested in the presence of normal mouse IgG. We determined intra- and inter-assay variability of % inhibition of mean oocyst intensity at each concentration of 4B7 (lower concentrations showed higher variability). We also showed that % inhibition was dependent on 4B7 concentration and the activity is specific to 4B7. Since obtaining empirical data is time-consuming, we generated a model using data from all 9 feeds and simulated the effects of different parameters on final readouts to improve the assay procedure and analytical methods for future studies. For example, we estimated the effect of number of mosquitoes dissected on variability of % inhibition, and simulated the relationship between % inhibition in oocyst intensity and % inhibition of prevalence of infected mosquitos at different mean oocysts in the control. SMFA is one of the few biological assays used in preclinical and early clinical development of transmission-blocking vaccines, and this study strongly supports its further development and application.  相似文献   

18.
The use of multi-factor statistical experimental design methodology minimized the vaccine material and laboratory resources required for optimization and validation of an HPLC assay for quantitation of depolymerized and total PRP. Components of the assay selected for optimization were adjuvant dissolution, ultracentrifuge conditions including ultracentrifuge model, sample diluent, mobile phase and column oven temperature. Previous experience has shown these components of the assay to be most troublesome and therefore required optimization prior to validation. Specificity, linearity, precision, accuracy and ruggedness were confirmed through a validation of the optimized assay. The validation also established the assay to be stability indicating, by showing that changes to the integrity of the PRP-OMPC conjugate could be detected.  相似文献   

19.
ELISA is the main approach for the sensitive quantification of protein biomarkers in body fluids and is currently employed in clinical laboratories for the measurement of clinical markers. As such, it also constitutes the main methodological approach for biomarker validation and further qualification. For the latter, specific assay performance requirements have to be met, as described in respective guidelines of regulatory agencies. Even though many clinical ELISA assays in serum are regularly used, ELISA clinical applications in urine are significantly less. The scope of our study was to evaluate ELISA assay analytical performance in urine for a series of potential biomarkers for bladder cancer, as a first step towards their large scale clinical validation. Seven biomarkers (Secreted protein acidic and rich in cysteine, Survivin, Slit homolog 2 protein, NRC-Interacting Factor 1, Histone 2B, Proteinase-3 and Profilin-1) previously described in the literature as having differential expression in bladder cancer were included in the study. A total of 11 commercially available ELISA tests for these markers were tested by standard curve analysis, assay reproducibility, linearity and spiking experiments. The results show disappointing performance with coefficients of variation>20% for the vast majority of the tests performed. Only 3 assays (for Secreted protein acidic and rich in cysteine, Survivin and Slit homolog 2 protein) passed the accuracy thresholds and were found suitable for further application in marker quantification. These results collectively reflect the difficulties in developing urine-based ELISA assays of sufficient analytical performance for clinical application, presumably attributed to the urine matrix itself and/or presence of markers in various isoforms.  相似文献   

20.
Process analytical technology (PAT) is an initiative from the US FDA combining analytical and statistical tools to improve manufacturing operations and ensure regulatory compliance. This work describes the use of a continuous monitoring system for a protein refolding reaction to provide consistency in product quality and process performance across batches. A small‐scale bioreactor (3 L) is used to understand the impact of aeration for refolding recombinant human vascular endothelial growth factor (rhVEGF) in a reducing environment. A reverse‐phase HPLC assay is used to assess product quality. The goal in understanding the oxygen needs of the reaction and its impact to quality, is to make a product that is efficiently refolded to its native and active form with minimum oxidative degradation from batch to batch. Because this refolding process is heavily dependent on oxygen, the % dissolved oxygen (DO) profile is explored as a PAT tool to regulate process performance at commercial manufacturing scale. A dynamic gassing out approach using constant mass transfer (kLa) is used for scale‐up of the aeration parameters to manufacturing scale tanks (2,000 L, 15,000 L). The resulting DO profiles of the refolding reaction show similar trends across scales and these are analyzed using rpHPLC. The desired product quality attributes are then achieved through alternating air and nitrogen sparging triggered by changes in the monitored DO profile. This approach mitigates the impact of differences in equipment or feedstock components between runs, and is directly inline with the key goal of PAT to “actively manage process variability using a knowledge‐based approach.” Biotechnol. Bioeng. 2009; 104: 340–351 © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号