首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Distribution of expansins in graviresponding maize roots   总被引:5,自引:0,他引:5  
To test if expansins, wall loosening proteins that disrupt binding between microfibrils and cell wall matrix, participate in the differential elongation of graviresponding roots, Zea mays L. cv. Merit roots were gravistimulated and used for immunolocalization with anti-expansin. Western blots showed cross-reaction with two proteins of maize, one of the same mass as cucumber expansin (29 kDa), the second slightly larger (32 kDa). Maize roots contained mainly the larger protein, but both were found in coleoptiles. The expansin distribution in cucumber roots and hypocotyls was similar to the distribution in maize. Roots showed stronger expansin signals on the expanding convex side than the concave flank as early as 30 min after gravistimulation. Treatment with brefeldin A, a vesicle transport inhibitor, or the auxin transport inhibitor, naphthylphthalamic acid, showed delayed graviresponse and the appearance of differential staining. Our results indicate that expansins may be transported and secreted to cell walls via vesicles and function in wall expansion.  相似文献   

2.
Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.Abbreviations MT microtubule - QC quiescent center This work was supported by National Science Foundation grant IBN-9118094.  相似文献   

3.
The maize mutant lilliputian is characterized by miniature seedling stature, reduced cell elongation, and aberrant root anatomy. Here, we document that root cells of this mutant show several defects in the organization of actin filaments (AFs). Specifically, cells within the meristem lack dense perinuclear AF baskets and fail to redistribute AFs during mitosis. In contrast, mitotic cells of wild-type roots accumulate AFs at plasma membrane-associated domains that face the mitotic spindle poles. Both mitotic and early postmitotic mutant cells fail to assemble transverse arrays of cortical AFs, which are characteristic for wild-type root cells. In addition, early postmitotic cells show aberrant distribution of endoplasmic AF bundles that are normally organized through anchorage sites at cross-walls and nuclear surfaces. In wild-type root apices, these latter AF bundles are organized in the form of symmetrically arranged conical arrays and appear to be essential for the onset of rapid cell elongation. Exposure of wild-type and cv. Alarik maize root apices to the F-actin drugs cytochalasin D and latrunculin B mimics the phenotype of lilliputian root apices. In contrast to AFs, microtubules are more or less normally organized in root cells of lilliputian mutant. Collectively, these data suggest that the LILLIPUTIAN protein, the nature of which is still unknown, impinges on plant development via its action on the actin cytoskeleton.  相似文献   

4.
Xu K  Babcock HP  Zhuang X 《Nature methods》2012,9(2):185-188
By combining astigmatism imaging with a dual-objective scheme, we improved the image resolution of stochastic optical reconstruction microscopy (STORM) and obtained <10-nm lateral resolution and <20-nm axial resolution when imaging biological specimens. Using this approach, we resolved individual actin filaments in cells and revealed three-dimensional ultrastructure of the actin cytoskeleton. We observed two vertically separated layers of actin networks with distinct structural organizations in sheet-like cell protrusions.  相似文献   

5.
We have previously shown that tyrosine phosphorylation of the actin-regulatory protein villin is accompanied by the redistribution of phosphorylated villin and a concomitant decrease in the F-actin content of intestinal epithelial cells. The temporal and spatial correlation of these two events suggested that tyrosine phosphorylation of villin may be involved in the rearrangement of the microvillar cytoskeleton. This hypothesis was investigated by analyzing the effects of tyrosine phosphorylation of villin on the kinetics of actin polymerization by reconstituting in vitro the tyrosine phosphorylation of villin and its association with actin. Full-length recombinant human villin was phosphorylated in vitro by expression in the TKX1-competent cells that carry an inducible tyrosine kinase gene. The actin-binding properties of villin were examined using a co-sedimentation assay. Phosphorylation of villin did not change the stoichiometry (1:2) but decreased the binding affinity (4.4 microm for unphosphorylated versus 0.6 microm for phosphorylated) of villin for actin. Using a pyrene-actin-based fluorescence assay, we demonstrated that tyrosine phosphorylation had a negative effect on actin nucleation by villin. In contrast, tyrosine phosphorylation enhanced actin severing by villin. Electron microscopic analysis showed complementary morphological changes. Phosphorylation inhibited the actin bundling and enhanced the actin severing functions of villin. Taken together our data show that tyrosine phosphorylation of villin decreases the amount of villin bound to actin filaments, inhibits the actin-polymerizing properties of villin, and promotes the actin-depolymerizing functions instead. These observations suggest a role for tyrosine phosphorylation in modulating the microvillar cytoskeleton in vivo by villin in response to specific physiological stimuli.  相似文献   

6.
7.
The Cholodny-Went hypothesis of gravitropism suggests that the graviresponse is controlled by the distribution of auxin. However, the mechanism of auxin transport during the graviresponse of roots is still unresolved. To determine whether the microtubule (MT) cytoskeleton is participating in auxin transport, the cytoskeleton was examined and the movement of 3 H-IAA measured in intact and excised taxol, oryzalin, and naphthylphthalamic acid (NPA)-treated roots of Zea mays cv. Merit. Taxol and oryzalin did not inhibit the graviresponse of roots but the auxin transport inhibitor NPA greatly inhibited both auxin transport and graviresponse. NPA had no effect on MT organization in vertical roots, but caused MT reorientation in horizontally placed roots. Regardless of treatment, the organization of MTs in intact roots differed from that in root segments. The MT inhibitors, taxol and oryzalin had opposite effects on the MTs, namely, depolymerization (oryzalin) and stabilization and thickening (taxol), but both treatments caused swelling of the roots. The data indicate that the MT cytoskeleton does not directly interfere with auxin transport or auxin-mediated growth responses in maize roots.  相似文献   

8.
Phosphoinositide-specific phospholipase C (PI-PLC) activities are involved in mediating plant cell responses to environmental stimuli. Two variants of PI-PLC have been partially purified from the roots of oat seedlings; one cytosolic and one particulate. Although the cytosolic enzyme was significantly purified, the activity still co-migrated with a number of other proteins on heparin HPLC and also on size-exclusion chromatography. The partially purified PI-PLC was tested by Western blotting, and we found that actin and actin-binding proteins, profilin and tropomyosin, co-purified with cytosolic phospholipase C. After a non-ionic detergent (Triton X-100) treatment, PI-PLC activities still remained with the actin cytoskeleton. The effects of phalloidin and F-buffer confirmed this association; these conditions, which favor actin polymerization, decreased the release of PI-PLC from the cytoskeleton. The treatments of latrunculin and G-buffer, the conditions that favor actin depolymerization, increased the release of PI-PLC from the cytoskeleton. These results suggest that oat PI-PLC associates with the actin cytoskeleton.  相似文献   

9.
10.
The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.  相似文献   

11.
Although the actin cytoskeleton and the translation machinery are considered to be separate cellular complexes, growing evidence supports overlapping regulation of the two systems. Because of its interaction with actin, the eukaryotic translation elongation factor 1A (eEF1A) is proposed to be a regulator or link between these processes. Using a genetic approach with the yeast Saccharomyces cerevisiae, specific regions of eEF1A responsible for actin interactions and bundling were identified. Five new mutations were identified along one face of eEF1A. Dramatic changes in cell growth, cell morphology, and actin cable and patch formation as well as a unique effect on total translation in strains expressing the F308L or S405P eEF1A mutant form were observed. The translation effects do not correlate with reduced translation elongation but instead include an initiation defect. Biochemical analysis of the eEF1A mutant forms demonstrated reduced actin-bundling activity in vitro. Reduced total translation and/or the accumulation of 80S ribosomes in strains with either a mutation or a null allele of genes encoding actin itself or actin-regulating proteins Tpm1p, Mdm20p, and Bnirp/Bni1p was observed. Our data demonstrate that eEF1A, other actin binding proteins, and actin mutants affect translation initiation through the actin cytoskeleton.  相似文献   

12.
13.
Actin and nonmuscle myosin heavy chain (myosin-II) have been identified and localized in the cortex of unfertilized zebrafish eggs using techniques of SDS-polyacrylamide gel electrophoresis, immunoblotting, and fluorescence microscopy. Whole egg mounts, egg fragments, cryosections, and cortical membrane patches probed with rhodamine phalloidin, fluorescent DNase-I, or anti-actin antibody showed the cortical cytoskeleton to contain two domains of actin: filamentous and nonfilamentous. Filamentous actin was restricted to microplicae and the cytoplasmic face of the plasma membrane where it was organized as an extensive meshwork of interconnecting filaments. The cortical cytoplasm deep to the plasma membrane contained cortical granules and sequestered actin in nonfilamentous form. The cytoplasmic surface (membrane?) of cortical granules displayed an enrichment of nonfilamentous actin. An antibody against human platelet myosin was used to detect myosin-II in whole mounts and egg fragments. Myosin-II colocalized with both filamentous and nonfilamentous actin domains of the cortical cytoskeleton. It was not determined if egg myosin was organized into filaments. Similar to nonfilamentous actin, myosin-II appeared to be concentrated over the surface of cortical granules where staining was in the form of patches and punctate foci. The identification of organized and interconnected domains of filamentous actin, nonfilamentous actin, and myosin-II provides insight into possible functions of these proteins before and after fertilization. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Cell growth in the yeast Saccharomyces cerevisiae depends on polarization of the actin cytoskeleton. In this study, we investigated how the cell regulates the distribution of actin in response to low pH conditions, focusing on the role of mitogen-activated protein kinases, Hog1 and Slt2. Changing the extracellular pH from 6.0 to 3.0 caused a transient depolarization of the actin cytoskeleton. Actin cables were no longer visible, and actin patches appeared randomly distributed after 30 min at pH 3.0. The deletion strain hog1Delta did not show this low-pH phenotype, suggesting that Hog1 is involved in depolarization of the actin cytoskeleton in response to low-pH stress. Yeast cells incubated at pH 3.0 also showed markedly increased endocytosis compared with the control at neutral pH, as indicated by the uptake of Lucifer Yellow (LY). Both the hog1Delta and slt2Delta mutants took up LY into the vacuole to a similar extent as the wild-type strain. In addition, cells grown at pH 3.0 showed a 2-fold increase in phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) levels, as did the hog1Delta or slt2Delta cells. Efficient uptake of LY and actin repolarization at pH 3.0 might therefore require activation of PI(4,5)P2 synthesis.  相似文献   

15.
Studying plant root kinematics is important for understanding certain aspects of root growth and movement, which are strictly correlated in plants. However, there is little available data on autonomous movements in plant roots, such as nutations, and the data that are available are poorly described. We investigated the autonomous movements during growth in primary maize roots by estimating the main kinematic parameters of nutations (i.e., the period of duration and amplitude) and the growth rate. The estimations of nutation parameters were performed by developing dedicated methods, which are based on the analysis of root tip displacement and tip velocity. The data relative to the tip displacements were obtained using tip tracing software developed by our team specifically for this purpose. The results confirmed that the nutational phenomenon covers the continuous range of periods and amplitudes, with certain dominant period-amplitude types, which we clustered into three groups: i) amplitudes less than 0.1 mm and 4–16 min periods, ii) amplitudes less than 0.1 mm and 20–120 min periods, and iii) amplitudes greater than 0.1 mm and 24–120 min periods.  相似文献   

16.
玉米初生根向水性诱导优化试验研究   总被引:2,自引:0,他引:2  
为了研究湿度梯度对根系向水性反应的影响,采用Takahashi and Scott于1993年创建的方法,设置以下3个试验:1)向水性诱导物不同倾斜角试验;2)根系距向水性诱导物不同距离试验;3)根尖距底部饱和K2CO3溶液不同距离试验。同时,还研究了根长和根系延伸速率对根系向水性弯曲的影响。结果表明,用饱和K2CO3溶液控制湿度时根系的向水性弯曲度明显大于纯水。随着诱导物倾斜角的增大,向水性弯曲增强。与距诱导物3 mm和6 mm相比,根系直接接触诱导物时表现出最大的向水性反应。与根尖距底部盐溶液6 cm相比,相距4 cm时向水性弯曲度增大,这些与根尖周围的湿度梯度增大有关。当根长为1.0、1.5、2.0、2.5、3.0 cm时,短根比长根表现出更大的向水性反应,这可能与其较慢的延伸速率为根系对湿度梯度的反应提供了更充足的时间有关。为了验证这个假说,用相同长度的根系、通过控制不同温度进行试验,结果表明根系的向水性弯曲随温度升高而降低。可见,玉米初生根的向水性反应受环境和根系发育阶段两方面影响。当根系相距诱导物较近、根系周围的湿度梯度较大时,根系向水性反应更强。而且,具有较小延伸速率根系的向水性反应更大。考虑到干旱条件下根系伸长慢、且土壤中湿度梯度大,因而可以认为干旱条件下根系的向水性生长在玉米吸收水分中有重要作用。同时,对根系向水性诱导方法的优化有助于其生理机制的进一步研究。  相似文献   

17.
During sporulation in Saccharomyces cerevisiae, the four daughter cells (spores) are formed inside the boundaries of the mother cell. Here, we investigated the dynamics of spore assembly and the actin cytoskeleton during this process, as well as the requirements for filamentous actin during the different steps of spore formation. We found no evidence for a polarized actin cytoskeleton during sporulation. Instead, a highly dynamic network of non-polarized actin cables is present underneath the plasma membrane of the mother cell. We found that a fraction of prospore membrane (PSM) precursors are transported along the actin cables. The velocity of PSM precursors is diminished if Myo2p or Tpm1/2p function is impaired. Filamentous actin is not essential for meiotic progression, for shaping of the PSMs or for post-meiotic cytokinesis. However, actin is essential for spore wall formation. This requires the function of the Arp2/3p complex and involves large carbohydrate-rich compartments, which may be chitosome analogous structures.  相似文献   

18.
Regulated cell death, or apoptosis, has evolved to fulfil a myriad of functions amongst multicellular organisms. It is now apparent that programmed cell death occurs in unicellular organisms such as yeast. In yeast, as in higher eukaryotes, the actin cytoskeleton is an essential component of a number of cellular activities, and many of the regulatory proteins involved are highly conserved. Recent evidence from diverse eukaryotic systems suggests that the actin cytoskeleton has a role in regulating apoptosis via interactions with the mitochondria. This interaction also appears to have a significant impact on the management of oxidative stress and so cellular ageing. In this mini-review we summarise some of the work, which suggests that actin is a key regulator of apoptosis and ageing in eukaryotic cells.  相似文献   

19.
The actin cytoskeleton is involved in the transport and positioning of Golgi bodies, but the actin-based processes that determine the positioning and motility behavior of Golgi bodies are not well understood. In this work, we have studied the relationship between Golgi body motility behavior and actin organization in intercalary growing root epidermal cells during different developmental stages. We show that in these cells two distinct actin configurations are present, depending on the developmental stage. In small cells of the early root elongation zone, fine filamentous actin (F-actin) occupies the whole cell, including the cortex. In larger cells in the late elongation zone that have almost completed cell elongation, actin filament bundles are interspersed with areas containing this fine F-actin and areas without F-actin. Golgi bodies in areas with the fine F-actin exhibit a non-directional, wiggling type of motility. Golgi bodies in areas containing actin filament bundles move up to 7 μm s?1. Since the motility of Golgi bodies changes when they enter an area with a different actin configuration, we conclude that the type of movement depends on the actin organization and not on the individual organelle. Our results show that the positioning of Golgi bodies depends on the local actin organization.  相似文献   

20.
Dramatic morphogenetic processes underpin nearly every step of nervous system development, from initial neuronal migration and axon guidance to synaptogenesis. Underlying this morphogenesis are dynamic rearrangements of cytoskeletal architecture. Here we discuss the roles of the actin cytoskeleton in the development of presynaptic terminals, from the elaboration of terminal arbors to the recruitment of presynaptic vesicles and active zone components. The studies discussed here underscore the importance of actin regulation at every step in neuronal circuit assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号