共查询到20条相似文献,搜索用时 15 毫秒
1.
Assessment of predation risk is vital for the success of an individual. Primary cues for the assessment include visual and
olfactory stimuli, but the relative importance of these sources of information for risk assessment has seldom been assessed
for marine fishes. This study examined the importance of visual and chemical cues in assessing risk for the star goby, Asterropteryx semipunctatus. Visual and chemical cue intensities were used that were indicative of a high threat situation. The behavioural response
elicited by both the visual cues of a predator (the rock cod, Cephalopholis boenak) and the chemical alarm cues from conspecifics were similar in magnitude, with responses including a decrease in feeding
strikes and moves. A bobbing behaviour was exhibited when the predator was visible and not when only exposed to the chemical
alarm cue. When visual and chemical cues were presented together they yielded a stronger antipredator response than when gobies
were exposed solely to conspecific alarm cues. This suggests additivity of risk assessment information at the levels of threat
used, however, the goby’s response is also likely to depend on the environmental and social context of the predator–prey encounter.
This study highlights the importance of chemical cues in the assessment of predation risk for a coral reef fish. 相似文献
2.
Coding of natural scenes in primary visual cortex 总被引:4,自引:0,他引:4
Natural scene coding in ferret visual cortex was investigated using a new technique for multi-site recording of neuronal activity from the cortical surface. Surface recordings accurately reflected radially aligned layer 2/3 activity. At individual sites, evoked activity to natural scenes was weakly correlated with the local image contrast structure falling within the cells' classical receptive field. However, a population code, derived from activity integrated across cortical sites having retinotopically overlapping receptive fields, correlated strongly with the local image contrast structure. Cell responses demonstrated high lifetime sparseness, population sparseness, and high dispersal values, implying efficient neural coding in terms of information processing. These results indicate that while cells at an individual cortical site do not provide a reliable estimate of the local contrast structure in natural scenes, cell activity integrated across distributed cortical sites is closely related to this structure in the form of a sparse and dispersed code. 相似文献
3.
4.
5.
How our perceptual experience of the world remains stable and continuous despite the frequent repositioning eye movements remains very much a mystery. One possibility is that our brain actively constructs a spatiotopic representation of the world, which is anchored in external--or at least head-centred--coordinates. In this study, we show that the positional motion aftereffect (the change in apparent position after adaptation to motion) is spatially selective in external rather than retinal coordinates, whereas the classic motion aftereffect (the illusion of motion after prolonged inspection of a moving source) is selective in retinotopic coordinates. The results provide clear evidence for a spatiotopic map in humans: one which can be influenced by image motion. 相似文献
6.
A major part of vision research builds on the assumption that processing of visual stimuli can be understood on the basis of knowledge about the processing of simplified, artificial stimuli. Recent experimental advances, however, show that a combination of responses to simplified stimuli does not adequately describe responses to natural visual scenes. The systems performance exceeds the performance predicted from understanding its basic constituents. This highlights the fact that the visual system is specifically adapted to the properties of its everyday input and can only fully be understood when probed with naturalistic stimuli. 相似文献
7.
Both natural scenes and visual art are often perceived as esthetically pleasing. It is therefore conceivable that the two types of visual stimuli share statistical properties. For example, natural scenes display a Fourier power spectrum that tends to fall with spatial frequency according to a power-law. This result indicates that natural scenes have fractal-like, scale-invariant properties. In the present study, we asked whether visual art displays similar statistical properties by measuring their Fourier power spectra. Our analysis was restricted to graphic art from the Western hemisphere. For comparison, we also analyzed images, which generally display relatively low or no esthetic quality (household and laboratory objects, parts of plants, and scientific illustrations). Graphic art, but not the other image categories, resembles natural scenes in showing fractal-like, scale-invariant statistics. This property is universal in our sample of graphic art; it is independent of cultural variables, such as century and country of origin, techniques used or subject matter. We speculate that both graphic art and natural scenes share statistical properties because visual art is adapted to the structure of the visual system which, in turn, is adapted to process optimally the image statistics of natural scenes. 相似文献
8.
9.
10.
Cronin TW Marshall J 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1565):619-626
Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication. 相似文献
11.
Visual saliency is the perceptual quality that makes some items in visual scenes stand out from their immediate contexts. Visual saliency plays important roles in natural vision in that saliency can direct eye movements, deploy attention, and facilitate tasks like object detection and scene understanding. A central unsolved issue is: What features should be encoded in the early visual cortex for detecting salient features in natural scenes? To explore this important issue, we propose a hypothesis that visual saliency is based on efficient encoding of the probability distributions (PDs) of visual variables in specific contexts in natural scenes, referred to as context-mediated PDs in natural scenes. In this concept, computational units in the model of the early visual system do not act as feature detectors but rather as estimators of the context-mediated PDs of a full range of visual variables in natural scenes, which directly give rise to a measure of visual saliency of any input stimulus. To test this hypothesis, we developed a model of the context-mediated PDs in natural scenes using a modified algorithm for independent component analysis (ICA) and derived a measure of visual saliency based on these PDs estimated from a set of natural scenes. We demonstrated that visual saliency based on the context-mediated PDs in natural scenes effectively predicts human gaze in free-viewing of both static and dynamic natural scenes. This study suggests that the computation based on the context-mediated PDs of visual variables in natural scenes may underlie the neural mechanism in the early visual cortex for detecting salient features in natural scenes. 相似文献
12.
Bernard Marius 't Hart Hannah Claudia Elfriede Fanny Schmidt Ingo Klein-Harmeyer Wolfgang Einh?user 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1628)
For natural scenes, attention is frequently quantified either by performance during rapid presentation or by gaze allocation during prolonged viewing. Both paradigms operate on different time scales, and tap into covert and overt attention, respectively. To compare these, we ask some observers to detect targets (animals/vehicles) in rapid sequences, and others to freely view the same target images for 3 s, while their gaze is tracked. In some stimuli, the target''s contrast is modified (increased/decreased) and its background modified either in the same or in the opposite way. We find that increasing target contrast relative to the background increases fixations and detection alike, whereas decreasing target contrast and simultaneously increasing background contrast has little effect. Contrast increase for the whole image (target + background) improves detection, decrease worsens detection, whereas fixation probability remains unaffected by whole-image modifications. Object-unrelated local increase or decrease of contrast attracts gaze, but less than actual objects, supporting a precedence of objects over low-level features. Detection and fixation probability are correlated: the more likely a target is detected in one paradigm, the more likely it is fixated in the other. Hence, the link between overt and covert attention, which has been established in simple stimuli, transfers to more naturalistic scenarios. 相似文献
13.
Abstract Closed formulae for both real and reciprocal space parts of cutoff errors in the Ewald summation method in cubic periodic boundary conditions are derived. Such estimates are useful in tuning parameters in molecular simulations. Errors in both the electrostatic energy and forces are considered. The estimates apply to a disordered configuration of point charges and, with some limitations, also to point-charge molecular models. The accuracy of our estimates is tested and confirmed using simulated configurations of two systems (molten salt and diethylether) under a variety of conditions. 相似文献
14.
Weakly electric fish are able to detect and localize prey based on microvolt-level perturbations in the fishs self-generated electric field. In natural environments, weak prey-related signals are embedded in much stronger electrosensory background noise. To better characterize the signal and background components associated with natural electrolocation tasks, we recorded transdermal voltage modulations in restrained Apteronotus albifrons in response to moving spheres, tail bends, and large nonconducting boundaries. Spherical objects give rise to ipsilateral images with center-surround structure and contralateral images that are weak and diffuse. Tail bends and laterally placed nonconducting boundaries induce relatively strong ipsilateral and contralateral modulations of opposite polarity. We present a computational model of electric field generation and electrosensory image formation that is able to reproduce the key features of these empirically measured signal and background components in a unified framework. The model comprises an array of point sources and sinks distributed along the midline of the fish, which can conform to arbitrary body bends. The model is computationally fast and can be used to estimate the spatiotemporal pattern of activation across the entire electroreceptor array of the fish during natural behaviors. 相似文献
15.
R Baddeley L F Abbott M C Booth F Sengpiel T Freeman E A Wakeman E T Rolls 《Proceedings. Biological sciences / The Royal Society》1997,264(1389):1775-1783
The primary visual cortex (V1) is the first cortical area to receive visual input, and inferior temporal (IT) areas are among the last along the ventral visual pathway. We recorded, in area V1 of anaesthetized cats and area IT of awake macaque monkeys, responses of neurons to videos of natural scenes. Responses were analysed to test various hypotheses concerning the nature of neural coding in these two regions. A variety of spike-train statistics were measured including spike-count distributions, interspike interval distributions, coefficients of variation, power spectra, Fano factors and different sparseness measures. All statistics showed non-Poisson characteristics and several revealed self-similarity of the spike trains. Spike-count distributions were approximately exponential in both visual areas for eight different videos and for counting windows ranging from 50 ms to 5 seconds. The results suggest that the neurons maximize their information carrying capacity while maintaining a fixed long-term-average firing rate, or equivalently, minimize their average firing rate for a fixed information carrying capacity. 相似文献
16.
《Somatosensory & motor research》2013,30(4):305-310
Spatial summation is known to influence the magnitude of sensation for stationary cutaneous stimuli. Yet analysis of moving stimuli may also be pertinent, since most stimuli that attract our attention involve movements over the skin surface. The present investigation dealt with the importance of spatial summation for the appreciation of the direction of motion for moving stimuli.The ability to detect the direction of motion was tested on the radial surface of the forearm with the two-alternative forced-choice method. Stimulation was performed with a rolling wheel, in order to exclude friction-generated activation of stretch receptors. Each subject was tested with two wheels with the same radius but different widths, 1 mm and 15 mm. On average, the subjects performed better with the wide wheel than with the narrow one for stimulation distances ≥ 16 mm. This value also probably exceeds the threshold distance for directional discrimination for the narrow wheel, which indicates that spatial summation improves suprathreshold performance. 相似文献
17.
Francisco G. Gonzálvez Miguel A. Rodríguez-Gironés 《Proceedings. Biological sciences / The Royal Society》2013,280(1763)
Predator avoidance and foraging often pose conflicting demands. Animals can decrease mortality risk searching for predators, but searching decreases foraging time and hence intake. We used this principle to investigate how prey should use information to detect, assess and respond to predation risk from an optimal foraging perspective. A mathematical model showed that solitary bees should increase flower examination time in response to predator cues and that the rate of false alarms should be negatively correlated with the relative value of the flower explored. The predatory ant, Oecophylla smaragdina, and the harmless ant, Polyrhachis dives, differ in the profile of volatiles they emit and in their visual appearance. As predicted, the solitary bee Nomia strigata spent more time examining virgin flowers in presence of predator cues than in their absence. Furthermore, the proportion of flowers rejected decreased from morning to noon, as the relative value of virgin flowers increased. In addition, bees responded differently to visual and chemical cues. While chemical cues induced bees to search around flowers, bees detecting visual cues hovered in front of them. These strategies may allow prey to identify the nature of visual cues and to locate the source of chemical cues. 相似文献
18.
Modulation of whitefly take-off and flight orientation by wind speed and visual cues 总被引:5,自引:0,他引:5
The effect of different wind speeds on take-off and flight orientation of the sweetpotato whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae), was studied in the presence of a green visual stimulus which reflected 550 ± 10 nm light, or a white stimulus of the same intensity. When the white light was present, take-off was negatively correlated with wind speed. Analysis of the flight tracks of whiteflies in 0, 15 and 30 cm/s wind with the white light present showed that flight was not directed toward the stimulus in zero wind, and that insects were carried downwind as the wind increased. Net displacement downwind was significantly slower than the wind speed, indicating that B. tabaci can control its rate of displacement relative to its surroundings, and is not always passively transported by the wind. In the presence of the green visual stimulus, take-off and flight behaviour of B. tabaci was markedly different to that observed in the presence of the white light. Taking off was more likely and whiteflies made upwind orientated flights, landing on the illuminated section of the screen when it reflected green light. At all wind speeds tested, the mean ground speeds of B. tabaci were approximately 20 cm/s whether the insects were flying upwind or downwind. This uniformity of ground speed regardless of the changing effects of wind-induced drift in different directions strongly suggests that whiteflies actively control their ground speed using visual flow fields in a manner similar to all other flying insects examined thus far. 相似文献
19.
Desert ants, foraging in cluttered semiarid environments, are thought to be visually guided along individual, habitual routes.
While other navigational mechanisms (e.g. path integration) are well studied, the question of how ants extract reliable visual
features from a complex visual scene is still largely open. This paper explores the assumption that the upper outline of ground
objects formed against the sky, i.e. the skyline, provides sufficient information for visual navigation. We constructed a
virtual model of the ant’s environment. In the virtual environment, panoramic images were recorded and adapted to the resolution
of the desert ant’s complex eye. From these images either a skyline code or a pixel-based intensity code were extracted. Further,
two homing algorithms were implemented, a modified version of the average landmark vector (ALV) model (Lambrinos et al. Robot
Auton Syst 30:39–64, 2000) and a gradient ascent method. Results show less spatial aliasing for skyline coding and best homing
performance for ALV homing based on skyline codes. This supports the assumption of skyline coding in visual homing of desert
ants and allows novel approaches to technical outdoor navigation. 相似文献
20.
J. Van den Berg B. Torto J. A. Pickett L. E. Smart L. J. Wadhams & C. M. Woodcock 《Journal of Applied Entomology》2008,132(6):490-496
Field trapping experiments investigated the response of the pollen beetle Astylus atromaculatus to visual and olfactory cues during a 3-year period, 1999–2001. The visual preference of the pollen beetle was determined using yellow, white, blue, green and red water traps. The yellow trap was most attractive, capturing 56% of the total beetles trapped, with 30% caught by the blue and white traps, while 14% was caught by the red and green traps. The response of the beetle to olfactory cues was then evaluated by using the yellow water trap with three antennally active components identified in the volatiles of sorghum panicles by coupled gas chromatography (GC)–electroantennographic detection and GC–mass spectrometry. These components were 2-phenylethanol, benzyl alcohol and linalool. There were no significant colour × chemical compound interactions and traps baited with 2-phenylethanol captured significantly more beetles than unbaited traps, irrespective of trap colour, demonstrating the effectiveness of olfactory cues in trapping the pollen beetle. Traps baited with 2-phenylethanol were more attractive than and caught more beetles than traps baited with linalool. 2-Phenylethanol had the greatest effect on the relatively unattractive blue trap, confirming the importance of olfactory cues mediating A. atromaculatus attraction . 相似文献