首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Zebrafish (Danio rerio), due to its optical accessibility and similarity to human, has emerged as model organism for cardiac research. Although various methods have been developed to assess cardiac functions in zebrafish embryos, there lacks a method to assess heartbeat regularity in blood vessels. Heartbeat regularity is an important parameter for cardiac function and is associated with cardiotoxicity in human being. Using stereomicroscope and digital video camera, we have developed a simple, noninvasive method to measure the heart rate and heartbeat regularity in peripheral blood vessels. Anesthetized embryos were mounted laterally in agarose on a slide and the caudal blood circulation of zebrafish embryo was video-recorded under stereomicroscope and the data was analyzed by custom-made software. The heart rate was determined by digital motion analysis and power spectral analysis through extraction of frequency characteristics of the cardiac rhythm. The heartbeat regularity, defined as the rhythmicity index, was determined by short-time Fourier Transform analysis.  相似文献   

2.

Background  

Cadherins are cell surface adhesion molecules that play important roles in development of vertebrate tissues and organs. We studied cadherin2 expression in developing zebrafish heart using in situ hybridization and immunocytochemical methods, and we found that cadherin2 was strongly expressed by the myocardium of the embryonic zebrafish. To gain insight into cadherin2 role in the formation and function of the heart, we analyzed cardiac differentiation and performance in a cadherin2 mutant, glass onion (glo).  相似文献   

3.

Aims

While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters.

Methods and Results

Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored.

Conclusion

Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models.  相似文献   

4.

Background  

Unc-45 is a myosin chaperone and a Hsp90 co-chaperone that plays a key role in muscle development. Genetic and biochemical studies in C. elegans have demonstrated that Unc-45 facilitates the process of myosin folding and assembly in body wall muscles. Loss or overexpression of Unc-45 in C. elegans results in defective myofibril organization. In the zebrafish Danio rerio, unc-45b, a homolog of C. elegans unc-45, is expressed in both skeletal and cardiac muscles. Earlier studies indicate that mutation or knockdown of unc-45b expression in zebrafish results in a phenotype characterized by a loss of both thick and thin filament organization in skeletal and cardiac muscle. The effects of unc-45b knockdown on other sarcomeric structures and the phenotype of Unc-45b overexpression, however, are poorly understood in vertebrates.  相似文献   

5.

Background  

The Class I cytokine receptors have a wide range of actions, including a major role in the development and function of immune and blood cells. However, the evolution of the genes encoding them remains poorly understood. To address this we have used bioinformatics to analyze the Class I receptor repertoire in sea squirt (Ciona intestinalis) and zebrafish (Danio rerio).  相似文献   

6.

Introduction

Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo.

Materials and Methods

Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations.

Results

Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001). Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01) and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03).

Discussion

In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic alterations.  相似文献   

7.

Background  

The zebrafish, Danio rerio, is used as a model organism to study vertebrate genetics and development. An effective enhancer trap (ET) in zebrafish using the Tol2 transposon has been demonstrated. This approach could be used to study embryogenesis of a vertebrate species in real time and with high resolution.  相似文献   

8.

Background  

The desmosomal cadherins (DCs), desmocollin (Dsc) and desmoglein (Dsg), are the adhesion molecules of desmosomes, intercellular adhesive junctions of epithelia and cardiac muscle. Both the DCs and desmosomes have demonstrably essential roles in mammalian development. In order to initiate their study in a more tractable developmental system we have characterised zebrafish DCs and examined their roles in early zebrafish development.  相似文献   

9.

Background

Vascular endothelial cadherin (VE-cad) is essential for endothelial barrier integrity and vascular sprouting. However, the role of this important protein in cardiovascular development is only recently becoming apparent.

Methodology/Principal Findings

To characterize the role of VE-cadherin in cardiovascular development, we analyzed cardiovascular development in a zebrafish VE-cad knockdown model. Embryos deficient in VE-cad show profoundly impaired cardiac development despite having apparently normal peripheral vasculature. Initial formation of the heart proceeds normally in knockdown embryos, but subsequent looping morphogenesis is impaired. Consistent with these results, VE-cad knockdown embryos demonstrate impaired cardiac function and early circulatory arrest. Histologic examination of knockdown embryos shows persistent, abnormal separation of the endocardial and myocardial layers. Using transmission electron microscopy, we demonstrate that endocardial junctions form poorly in VE-cad knockdown embryos, with resulting leak across the endothelial layer and reduction in the density of the cardiac jelly.

Conclusions

Our results demonstrate a significant role for VE-cadherin in cardiac development independent of its effects on the formation of the peripheral vasculature.  相似文献   

10.

Background  

Congenital cardiovascular diseases are the most common form of birth defects in humans. A substantial portion of these defects has been associated with inappropriate induction, migration, differentiation and patterning of pluripotent cardiac neural crest stem cells. While TGF-β-superfamily signaling has been strongly implicated in neural crest cell development, the detailed molecular signaling mechanisms in vivo are still poorly understood.  相似文献   

11.

Background  

Little is known about the affect of microgravity on gene expression, particularly in vivo during embryonic development. Using transgenic zebrafish that express the gfp gene under the influence of a β-actin promoter, we examined the affect of simulated-microgravity on GFP expression in the heart, notochord, eye, somites, and rohon beard neurons. We exposed transgenic zebrafish to simulated-microgravity for different durations at a variety of developmental times in an attempt to determine periods of susceptibility for the different developing organ systems.  相似文献   

12.
13.

Background  

The spadetail (spt) gene of zebrafish is expressed in presomitic mesoderm and in neural cells previously suggested to be Rohon-Beard neurons. The mechanism(s) generating the apparently irregular rostrocaudal distribution of spt-expressing cells in the developing CNS is unknown.  相似文献   

14.

Introduction  

Rheumatoid arthritis (RA) is a multi-organ inflammatory disorder associated with high cardiovascular morbidity and mortality. We sought to assess cardiac involvement using a comprehensive cardiac magnetic resonance imaging (cMRI) approach and to determine its association with disease characteristics in RA patients without symptomatic cardiac disease.  相似文献   

15.

Background  

During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes.  相似文献   

16.

Background  

The Dmbx1 gene is important for the development of the midbrain and hindbrain, and mouse gene targeting experiments reveal that this gene is required for mediating postnatal and adult feeding behaviours. A single Dmbx1 gene exists in terrestrial vertebrate genomes, while teleost genomes have at least two paralogs. We compared the loss of function of the zebrafish dmbx1a and dmbx1b genes in order to gain insight into the molecular mechanism by which dmbx1 regulates neurogenesis, and to begin to understand why these duplicate genes have been retained in the zebrafish genome.  相似文献   

17.

Background  

Zebrafish (D. rerio) has become a powerful and widely used model system for the analysis of vertebrate embryogenesis and organ development. While genetic methods are readily available in zebrafish, protocols for two dimensional (2D) gel electrophoresis and proteomics have yet to be developed.  相似文献   

18.

Rationale

The role of the endothelium in the pathogenesis of cardiovascular disease is an emerging field of study, necessitating the development of appropriate model systems and methodologies to investigate the multifaceted nature of endothelial dysfunction including disturbed barrier function and impaired vascular reactivity.

Objective

We aimed to develop and test an optimized high-speed imaging platform to obtain quantitative real-time measures of blood flow, vessel diameter and endothelial barrier function in order to assess vascular function in live vertebrate models.

Methods and Results

We used a combination of cutting-edge optical imaging techniques, including high-speed, camera-based imaging (up to 1000 frames/second), and 3D confocal methods to collect real time metrics of vascular performance and assess the dynamic response to the thromboxane A2 (TXA2) analogue, U-46619 (1 µM), in transgenic zebrafish larvae. Data obtained in 3 and 5 day post-fertilization larvae show that these methods are capable of imaging blood flow in a large (1 mm) segment of the vessel of interest over many cardiac cycles, with sufficient speed and sensitivity such that the trajectories of individual erythrocytes can be resolved in real time. Further, we are able to map changes in the three dimensional sizes of vessels and assess barrier function by visualizing the continuity of the endothelial layer combined with measurements of extravasation of fluorescent microspheres.

Conclusions

We propose that this system-based microscopic approach can be used to combine measures of physiologic function with molecular behavior in zebrafish models of human vascular disease.  相似文献   

19.

Background  

All standard methods for cDNA cloning are affected by a potential inability to effectively clone the 5' region of mRNA. The aim of this work was to estimate mRNA open reading frame (ORF) 5' region sequence completeness in the model organism Danio rerio (zebrafish).  相似文献   

20.

Background  

Key molecules involved in notochord differentiation and function have been identified through genetic analysis in zebrafish and mice, but MEK1 and 2 have so far not been implicated in this process due to early lethality (Mek1-/-) and functional redundancy (Mek2-/-) in the knockout animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号