首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Mitochondrial DNA sequencing increasingly results in the recognition of genetically divergent, but morphologically cryptic lineages. Species delimitation approaches that rely on multiple lines of evidence in areas of co-occurrence are particularly powerful to infer their specific status. We investigated the species boundaries of two cryptic lineages of the land snail genus Trochulus in a contact zone, using mitochondrial and nuclear DNA marker as well as shell morphometrics.  相似文献   

2.

Background

Fully asexually reproducing taxa lack outcrossing. Hence, the classic Biological Species Concept cannot be applied.

Methodology/Principal Findings

We used DNA sequences from the mitochondrial COI gene and the nuclear ITS2 region to check species boundaries according to the evolutionary genetic (EG) species concept in five morphospecies in the putative ancient asexual ostracod genera, Penthesilenula and Darwinula, from different continents. We applied two methods for detecting cryptic species, namely the K/θ method and the General Mixed Yule Coalescent model (GMYC). We could confirm the existence of species in all five darwinulid morphospecies and additional cryptic diversity in three morphospecies, namely in Penthesilenula brasiliensis, Darwinula stevensoni and in P. aotearoa. The number of cryptic species within one morphospecies varied between seven (P. brasiliensis), five to six (D. stevensoni) and two (P. aotearoa), respectively, depending on the method used. Cryptic species mainly followed continental distributions. We also found evidence for coexistence at the local scale for Brazilian cryptic species of P. brasiliensis and P. aotearoa. Our ITS2 data confirmed that species exist in darwinulids but detected far less EG species, namely two to three cryptic species in P. brasiliensis and no cryptic species at all in the other darwinulid morphospecies.

Conclusions/Significance

Our results clearly demonstrate that both species and cryptic diversity can be recognized in putative ancient asexual ostracods using the EG species concept, and that COI data are more suitable than ITS2 for this purpose. The discovery of up to eight cryptic species within a single morphospecies will significantly increase estimates of biodiversity in this asexual ostracod group. Which factors, other than long-term geographic isolation, are important for speciation processes in these ancient asexuals remains to be investigated.  相似文献   

3.

Background  

Two or more species are cryptic, if they are morphologically similar, biologically distinct, and misclassified as a single species. Cryptic species complexes were recently discovered within many bat species and we suspect that the bent-wing bat, Miniopterus schreibersii, found in Europe, northern Africa, and Asia Minor, could also form such a complex. Populations of M. schreibersii decline in most of the European countries and the species is currently listed as Near Threatened in the IUCN Red List. Finding that M. schreibersii is not a single species, but a species complex, would have a considerable impact on its conservation strategies, as the abundance of each component taxon would be much smaller than the one estimated for the nominal species.  相似文献   

4.

Background  

Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species.  相似文献   

5.

Background  

Anopheles cruzii is the primary human Plasmodium vector in southern and southeastern Brazil. The distribution of this mosquito follows the coast of the Brazilian Atlantic Forest. Previous studies indicated that An. cruzii is a complex of cryptic species.  相似文献   

6.
Pfenninger M  Nowak C 《PloS one》2008,3(5):e2157

Background

One of the central issues in ecology is the question what allows sympatric occurrence of closely related species in the same general area? The non-biting midges Chironomus riparius and C. piger, interbreeding in the laboratory, have been shown to coexist frequently despite of their close relatedness, similar ecology and high morphological similarity.

Methodology/Principal Findings

In order to investigate factors shaping niche partitioning of these cryptic sister species, we explored the actual degree of reproductive isolation in the field. Congruent results from nuclear microsatellite and mitochondrial haplotype analyses indicated complete absence of interspecific gene-flow. Autocorrelation analysis showed a non-random spatial distribution of the two species. Though not dispersal limited at the scale of the study area, the sister species occurred less often than expected at the same site, indicating past or present competition. Correlation and multiple regression analyses suggested the repartition of the available habitat along water chemistry gradients (nitrite, conductivity, CaCO3), ultimately governed by differences in summer precipitation regime.

Conclusions

We show that these morphologically cryptic sister species partition their niches due to a certain degree of ecological distinctness and total reproductive isolation in the field. The coexistence of these species provides a suitable model system for the investigation of factors shaping the distribution of closely related, cryptic species.  相似文献   

7.

Background

Management and conservation of biodiversity requires adequate species inventories. The Yasuní National Park is one of the most diverse regions on Earth and recent studies of terrestrial vertebrates, based on genetic evidence, have shown high levels of cryptic and undescribed diversity. Few genetic studies have been carried out in freshwater fishes from western Amazonia. Thus, in contrast with terrestrial vertebrates, their content of cryptic diversity remains unknown. In this study, we carried out genetic and morphological analyses on characin fishes at Yasuní National Park, in eastern Ecuador. Our goal was to identify cryptic diversity among one of the most speciose fish families in the Amazon region. This is the first time that genetic evidence has been used to assess the species content of the Napo Basin, one of the richest regions in vertebrate diversity.

Results

Phylogenetic analyses of partial mitochondrial 16S ribosomal RNA gene (∼600 pb) DNA sequences from 232 specimens of the family Characidae and its closest groups revealed eight candidate new species among 33 species sampled, representing a 24% increase in species number. Analyses of external morphology allowed us to confirm the species status of six of the candidate species.

Conclusions

Our results show high levels of cryptic diversity in Amazonian characins. If this group is representative of other Amazonian fish, our results would imply that the species richness of the Amazonian ichthyofauna is highly underestimated. Molecular methods are a necessary tool to obtain more realistic inventories of Neotropical freshwater fishes.  相似文献   

8.

Purpose of Review

The aim of this review is to evaluate these molecular-based methods able to identify pathogenic cryptic Candida spp. focusing on those that demonstrated to be useful in clinical laboratory settings.

Recent Findings

It is long known that some Candida spp. are genetically heterogeneous. Firstly, individual species were divided into groups based on differences on the sequence of some genes. Later, those groups were designated as cryptic species and defined as phenotypically indistinguishable species that are only identified by their DNA sequences. Many common Candida spp. are now considered complexes formed by several cryptic species. Some of them have been recognized as human pathogens. The identification of these species is problematic but necessary since they have different host range, infection sites, infection severity, and antifungal susceptibility. Several independent DNA markers were proposed as tools for the differentiation of highly related species. We will concentrate on the three species complexes most frequently associated with human infections including Candida albicans, C. glabrata, and C. parapsilosis complexes and a fourth group of less common but multiresistant species including C. haeumulonii complex and C. auris.

Summary

We review the clinically useful molecular tools able to differentiate the cryptic species of C. albicans, C. glabrata, and C. parapsilosis complexes and designated to uncover emerging multiresistant species.
  相似文献   

9.
Hu J  De Barro P  Zhao H  Wang J  Nardi F  Liu SS 《PloS one》2011,6(1):e16061

Background

To understand the processes of invasions by alien insects is a pre-requisite for improving management. The whitefly Bemisia tabaci is a cryptic species complex that contains some of the most invasive pests worldwide. However, extensive field data to show the geographic distribution of the members of this species complex as well as the invasion by some of its members are scarce.

Methodology/Principal Findings

We used field surveys and published data to assess the current diversity and distribution of B. tabaci cryptic species in China and relate the indigenous members to other Asian and Australian members of the complex. The survey covered the 16 provinces where indigenous B. tabaci occur and extends this with published data for the whole of China. We used molecular markers to identify cryptic species. The evolutionary relationships between the different Asian B. tabaci were reconstructed using Bayesian methods. We show that whereas in the past the exotic invader Middle East-Asia Minor 1 was predominant across China, another newer invader Mediterranean is now the dominant species in the Yangtze River Valley and eastern coastal areas, and Middle East-Asia Minor 1 is now predominant only in the south and south eastern coastal areas. Based on mtCO1 we identified four new cryptic species, and in total we have recorded 13 indigenous and two invasive species from China. Diversity was highest in the southern and southeastern provinces and declined to north and west. Only the two invasive species were found in the northern part of the country where they occur primarily in protected cropping. By 2009, indigenous species were mainly found in remote mountainous areas and were mostly absent from extensive agricultural areas.

Conclusions/Significance

Invasions by some members of the whitefly B. tabaci species complex can be rapid and widespread, and indigenous species closely related to the invaders are replaced.  相似文献   

10.

Background

Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid caterpillars providing new details on host plant use.

Methodology/Principal Findings

We gathered DNA barcode sequences from 857 adult Nymphalidae representing 121 different species. This total includes four species (Adelpha iphiclus, Adelpha malea, Hamadryas iphtime and Taygetis laches) that were initially overlooked because of their close morphological similarity to other species. The barcode results showed that each of the 121 species possessed a diagnostic array of barcode sequences. In addition, there was evidence of cryptic taxa; seven species included two barcode clusters showing more than 2% sequence divergence while one species included three clusters. All 71 nymphalid caterpillars were identified to a species level by their sequence congruence to adult sequences. These caterpillars represented 16 species, and included Hamadryas julitta, an endemic species from the Yucatan Peninsula whose larval stages and host plant (Dalechampia schottii, also endemic to the Yucatan Peninsula) were previously unknown.

Conclusions/Significance

This investigation has revealed overlooked species in a well-studied museum collection of nymphalid butterflies and suggests that there is a substantial incidence of cryptic species that await full characterization. The utility of barcoding in the rapid identification of caterpillars also promises to accelerate the assembly of information on life histories, a particularly important advance for hyperdiverse tropical insect assemblages.  相似文献   

11.

Background

A central question in evolutionary biology is how cryptic species maintain species cohesiveness in an area of sympatry. The coexistence of sympatrically living cryptic species requires the evolution of species-specific signalling and recognition systems. In nocturnal, dispersed living species, specific vocalisations have been suggested to act as an ideal premating isolation mechanism. We studied the structure and perception of male advertisement calls of three nocturnal, dispersed living mouse lemur species, the grey mouse lemur (Microcebus murinus), the golden brown mouse lemur (M. ravelobensis) and the Goodman's mouse lemur (M. lehilahytsara). The first two species occur sympatrically, the latter lives allopatrically to them.

Results

A multi-parameter sound analysis revealed prominent differences in the frequency contour and in the duration of advertisement calls. To test whether mouse lemurs respond specifically to calls of the different species, we conducted a playback experiment with M. murinus from the field using advertisement calls and alarm whistle calls of all three species. Individuals responded significantly stronger to conspecific than to heterospecific advertisement calls but there were no differences in response behaviour towards statistically similar whistle calls of the three species. Furthermore, sympatric calls evoked weaker interest than allopatric advertisement calls.

Conclusion

Our results provide the first evidence for a specific relevance of social calls for speciation in cryptic primates. They furthermore support that specific differences in signalling and recognition systems represent an efficient premating isolation mechanism contributing to species cohesiveness in sympatrically living species.  相似文献   

12.

Background

DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data.

Methodology/Principal Findings

The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n.

Conclusion/Significance

In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.  相似文献   

13.

Background  

Microorganisms are ubiquitous, yet we are only beginning to understand their diversity and population structure. Social amoebae (Dictyostelia) are a diverse group of unicellular eukaryotic microbes that display a unique social behaviour upon starvation in which cells congregate and then some die to help others survive and disperse. The genetic relationships among co-occurring cells have a major influence on the evolution of social traits and recent population genetic analysis found extensive genetic variation and possible cryptic speciation in one dictyostelid species (Dictyostelium purpureum). To further characterize the interplay among genetic variation, species boundaries, social behaviour, and reproductive isolation in the Dictyostelia, we conducted phylogenetic analyses and mating experiments with the geographically widespread social amoeba Dictyostelium giganteum.  相似文献   

14.

Background  

The study of recently-diverged species offers significant challenges both in the definition of evolutionary entities and in the estimation of gene flow among them. Iberian and North African wall lizards (Podarcis) constitute a cryptic species complex for which previous assessments of mitochondrial DNA (mtDNA) and allozyme variation are concordant in describing the existence of several highly differentiated evolutionary units. However, these studies report important differences suggesting the occurrence of gene flow among forms. Here we study sequence variation in two nuclear introns, β-fibint7 and 6-Pgdint7, to further investigate overall evolutionary dynamics and test hypotheses related to species delimitation within this complex.  相似文献   

15.
J Joshi  KP Karanth 《PloS one》2012,7(8):e42225

Background

There has been growing interest in integrative taxonomy that uses data from multiple disciplines for species delimitation. Typically, in such studies, monophyly is taken as a proxy for taxonomic distinctiveness and these units are treated as potential species. However, monophyly could arise due to stochastic processes. Thus here, we have employed a recently developed tool based on coalescent approach to ascertain the taxonomic distinctiveness of various monophyletic units. Subsequently, the species status of these taxonomic units was further tested using corroborative evidence from morphology and ecology. This inter-disciplinary approach was implemented on endemic centipedes of the genus Digitipes (Attems 1930) from the Western Ghats (WG) biodiversity hotspot of India. The species of the genus Digitipes are morphologically conserved, despite their ancient late Cretaceous origin.

Principal Findings

Our coalescent analysis based on mitochondrial dataset indicated the presence of nine putative species. The integrative approach, which includes nuclear, morphology, and climate datasets supported distinctiveness of eight putative species, of which three represent described species and five were new species. Among the five new species, three were morphologically cryptic species, emphasizing the effectiveness of this approach in discovering cryptic diversity in less explored areas of the tropics like the WG. In addition, species pairs showed variable divergence along the molecular, morphological and climate axes.

Conclusions

A multidisciplinary approach illustrated here is successful in discovering cryptic diversity with an indication that the current estimates of invertebrate species richness for the WG might have been underestimated. Additionally, the importance of measuring multiple secondary properties of species while defining species boundaries was highlighted given variable divergence of each species pair across the disciplines.  相似文献   

16.

Background

Dinoflagellates are important primary producers, crucial in marine food webs. Toxic strains, however, are the main causative agents of non-bacterial seafood poisoning, a major concern for public health worldwide. Despite their importance, taxonomic uncertainty within many genera of dinoflagellates is still high. The genus Coolia includes potentially harmful species and the diversity within the genus is just starting to become apparent.

Methodology/Principal Findings

In the current study, cultures were established from strains of Coolia spp. isolated from the central Great Barrier Reef (GBR). Cultures were identified based on thecal plate morphology and analyses of sequences (18S, ITS and 28S) from the nuclear rRNA operon. We report that the central GBR harbors a high diversity of Coolia species, including two species known to be capable of toxin production (C. tropicalis and C. malayensis), as well as the non-toxic C. canariensis. The strain of C. canariensis isolated from the GBR may in fact be a cryptic species, closely related but nevertheless phylogenetically distinct from the strain on which the holotype of C. canariensis was based. We also found evidence of the occurrence of a cryptic species morphologically very similar to both C. malayensis and C. monotis. The consequences of taxonomic confusion within the genus are discussed.

Conclusion/Significance

The central GBR region harbors a previously unreported high diversity of Coolia spp., including two species known to potentially produce toxins. The presence of a cryptic species of unknown toxicity highlights the importance of cryptic diversity within dinoflagellates.  相似文献   

17.

Background

Multipartite mitochondrial genomes are very rare in animals but have been found previously in two insect orders with highly rearranged genomes, the Phthiraptera (parasitic lice), and the Psocoptera (booklice/barklice).

Results

We provide the first report of a multipartite mitochondrial genome architecture in a third order with highly rearranged genomes: Thysanoptera (thrips). We sequenced the complete mitochondrial genomes of two divergent members of the Scirtothrips dorsalis cryptic species complex. The East Asia 1 species has the single circular chromosome common to animals while the South Asia 1 species has a genome consisting of two circular chromosomes. The fragmented South Asia 1 genome exhibits extreme chromosome size asymmetry with the majority of genes on the large, 14.28 kb, chromosome and only nad6 and trnC on the 0.92 kb mini-circle chromosome. This genome also features paralogous control regions with high similarity suggesting a very recent origin of the nad6 mini-circle chromosome in the South Asia 1 cryptic species.

Conclusions

Thysanoptera, along with the other minor paraenopteran insect orders should be considered models for rapid mitochondrial genome evolution, including fragmentation. Continued use of these models will facilitate a greater understanding of recombination and other mitochondrial genome evolutionary processes across eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1672-4) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background  

Molecular studies have revealed that many putative 'species' are actually complexes of multiple morphologically conservative, but genetically divergent 'cryptic species'. In extreme cases processes such as non-adaptive diversification (speciation without divergent selection) could mask the existence of ancient lineages as divergent as ecologically and morphologically diverse radiations recognised as genera or even families in related groups. The identification of such ancient, but cryptic, lineages has important ramifications for conservation, biogeography and evolutionary biology. Herein, we use an integrated multilocus genetic dataset (allozymes, mtDNA and nuclear DNA) to test whether disjunct populations of the widespread nominal Australian gecko species Crenadactylus ocellatus include distinct evolutionary lineages (species), and to examine the timing of diversification among these populations.  相似文献   

19.

Background

Taxonomical studies of the neotropical Peripatidae (Onychophora, velvet worms) have proven difficult, due to intraspecific variation and uniformity of morphological characters across this onychophoran subgroup. We therefore used molecular approaches, in addition to morphological methods, to explore the diversity of Epiperipatus from the Minas Gerais State of Brazil.

Methodology/Principal Findings

Our analyses revealed three new species. While Epiperipatus diadenoproctus sp. nov. can be distinguished from E. adenocryptus sp. nov. and E. paurognostus sp. nov. based on morphology and specific nucleotide positions in the mitochondrial cytochrome c oxidase subunit I (COI) and small ribosomal subunit RNA gene sequences (12S rRNA), anatomical differences between the two latter species are not evident. However, our phylogenetic analyses of molecular data suggest that they are cryptic species, with high Bayesian posterior probabilities and bootstrap and Bremer support values for each species clade. The sister group relationship of E. adenocryptus sp. nov. and E. paurognostus sp. nov. in our analyses correlates with the remarkable morphological similarity of these two species. To assess the species status of the new species, we performed a statistical parsimony network analysis based on 582 base pairs of the COI gene in our specimens, with the connection probability set to 95%. Our findings revealed no connections between groups of haplotypes, which have been recognized as allopatric lineages in our phylogenetic analyses, thus supporting our suggestion that they are separate species.

Conclusions/Significance

Our findings suggest high cryptic species diversity and endemism among the neotropical Peripatidae and demonstrate that the combination of morphological and molecular approaches is helpful for clarifying the taxonomy and species diversity of this apparently large and diverse onychophoran group.  相似文献   

20.
De Barro P  Ahmed MZ 《PloS one》2011,6(10):e25579

Background

A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally.

Methodology/Principal Findings

Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East – Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region.

Conclusion/Significance

The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号