首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of ethanol on exponential phase cultures of S. cerevisiae has been examined using l-alanine uptake and proton efflux as indices of ethanol tolerance. Preincubation with 2 M ethanol inhibited l-alanine uptake, proton efflux and fermentation rates. However, the effect of ethanol varied in yeast cells enriched with different fatty acyl residues. It was observed that cells enriched with polyunsaturated fatty acids acquired greater tolerance to ethanol as compared to monounsaturated fatty acids. By varying the degree of unsaturation of supplemented fatty acid, a sequential insertion of double bonds in yeast membrane lipid was achieved. Results demonstrated that S. cerevisiae became more resistant to ethanol with an increase in the degree of unsaturation and that membrane fluidity could be an important determinant of ethanol tolerance.  相似文献   

2.
Summary An investigation was made of changes in ergosterol content of the yeast Saccharomyces cerevisiae upon drying and subsequent rehydration. It was established that drying increases, but rehydration diminishes ergosterol content in yeasts. A statistically reliable multiple correlation was established between the resistance of population to drying, decrease of ergosterol content and a diminishing degree of fatty acid unsaturation during dehydration of dry yeasts.  相似文献   

3.
Summary Microspore-derived embryos fromBrassica napus cv. Topas (low erucic acid) and Reston (high erucic acid) were subjected to treatment with abscisic acid (ABA) during late-stage embryo development and then dried under controlled relative humidities to mature dry seed levels of moisture. Exogenously medium-supplied ABA arrested growth and development, reduced moisture content, increased total fatty acids on a dry weight basis, and stimulated systhesis of proteins in microspore-derived embryos. ABA also resulted in a higher proportion of 22∶1 in cv. Reston (high 22∶1) and increased the level of fatty acid unsaturation in cv. Topas (low 22∶1). The accumulation of two proteins that co-migrated with cruciferin and napin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gels were also promoted by exposure to ABA, and the degree of accumulation was dependent on the concentration and time of application of ABA. Controlled desiccation of microspore embryos, used to simulate normal maturation and dehydration of zygotic embryos during seed development, did not seem to cause an increase of either storage proteins, total fatty acids, or 22∶1 (in cv. Reston), suggesting that dehydration is not a prerequisite for these processes, at least in culturedBrassica embryos.  相似文献   

4.
Summary The effect of cultivation and dehydration conditions on the adenosine phosphate content of yeast cells has been studied. Irrespective of the cultivation conditions the total pool of adenosine phosphates was found to increase, mainly due to accumulation of ATP, during the exponential phase of cell growth and to decrease during transition of the culture into the stationary phase. Changes in the intracellular content of adenosine phosphates were parallel with changes in the respiratory activity of yeast cells cultivated under batch conditions. Yeast cells harvested at the exponential growth phase were sensitive to dehydration, losing a notable amount of adenosine phosphates as well as respiratory capacity during drying, leading to a massive dying-off of the cells. Yeast at the stationary phase was resistant to drying, and, during this process, accumulated ATP by mitochondrial oxidation of endogenous carbohydrates. The accumulated ATP was used by the dried yeast cells as an energy source in the first minutes of reactivation. On the basis of our results we recommend that the ATP content of dried yeast cells should be used as an indicator of their capacity to recover their viability by reactivation.  相似文献   

5.
Candida lipolytica yeast was grown batchwise on n-hexadecane as the carbon and energy source. Ceramides were quantitatively isolated from total lipids of exponential and stationary phase cells by a combination of column chromatography and preparative high-performance thin-layer chromatography. After acid methanolysis their composition was analyzed by gas-liquid chromatography. The ceramide content of the exponential phase cells was two times higher than the one of the stationary phase cells. The composition of long-chain base moiety of ceramides did not change significantly during the growth. In both growth phases 19-phytosphingosine was the major long-chain base. However, the fatty acid composition of ceramides changed greatly during the growth. In the exponential growth phase, ceramides contained predominantly fatty acids greater than 20 carbon atoms, while fatty acids shorter than 20 atoms predominated in ceramides of the stationary phase, 16:0 being the main one. In the exponential growth phase fatty acid moiety of ceramides was characterized by unusually high degree of unsaturation and relatively high proportion of odd-numbered fatty acids. However, the proportion of both, unsaturated and odd-numbered fatty acid decreased significantly in ceramides of the stationary phase. The unexpected finding was the absence of fatty acid hydroxylation of ceramides in the exponential phase cells and unusually low degree of hydroxylation in the stationary phase.  相似文献   

6.
In myelin, nuclear, microsomal, mitochondrial and synaptosomal fractions from the brain of the trout and frog, studies have been made on the composition of fatty acids and fatty aldehydes of the plasmalogen form and fatty acids of the diacylic form of phosphatidylethanolamin. It was shown that alongside with the increase of the relative content of the plasmalogen form of phosphatidylethanolamin in subcellular fractions of the brain in the frog, especially in the myelin, changes also take place in the composition of fatty acids (the increase in the content of polyenic acids, especially of arachidonic one) and fatty aldehydes (the increase in the degree of unsaturation). Brain myelin of coldblooded vertebrates exhibits similarity with myelin from higher vertebrates in its high content of plasmalogens with a high degree of unsaturation of fatty acids and fatty aldehydes.  相似文献   

7.
The fatty acid composition of yeast lipid was manipulated by using auxotrophic strain of S.cerevisiae, KD115, which requires unsaturated fatty acid (UFA) for its growth. It was possible to specifically enrich the yeast with different fatty acyl residues. As compared to wild type strain (S288C), the uptake of amino acids viz., L-alanine, glycine, L-glutamic acid, L-valine in KD115 was drastically reduced, however, the uptake of L-leucine and L-lysine was not affected by the change in lipid unsaturation. Kinetic studies revealed that KT and Jmax values for L-alanine were altered whereas for L-lysine they remained unaffected by UFA modification. Furthermore, unsaturation index for wild type cells was found to be fairly constant while it was variable in KD115 supplemented with different UFAs. It is observed that the variation in amino acid permeases activity which was affected by fluctuations in fatty acyl composition corresponds more to degree of unsaturation rather than growth stage of KD115.  相似文献   

8.
Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Delta(9) position. We expressed two sunflower (Helianthus annuus) oleate Delta(12) desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Delta(9,12), the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15 degrees C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp(+) or Trp(-) strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30 degrees C or 15 degrees C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains.  相似文献   

9.
A thin-layer chromatographic method utilizing ultracold temperatures has been developed to separate phosphoglycerides containing only long-chain saturated fatty acids from phosphoglycerides containing fatty acids with any degree of unsaturation. The method is direct, nondiluting, and nondestructive. Since the surface-active lipids found in lung surfactant contain only long-chain, saturated fatty acids, the method should be particularly useful to those in lung lipid research. Studies on the uptake of labeled precursors into the lung surfactant lipids, as well as work on quantitation of surfactant lecithins in the lung, can be facilitated by this method.  相似文献   

10.
The sensitivity of Saccharomyces cerevisiae to the redox-active metal copper has recently been found to be influenced by cellular fatty acid composition. This study sought to investigate whether fatty acid composition affected plasma membrane permeabilisation and whole-cell toxicity induced by the redox-inactive metal cadmium. S. cerevisiae NCYC 1383 was enriched with the polyunsaturated fatty acids linoleate (18:2) and linolenate (18:3) by growth in 18:2- or 18:3-supplemented medium. Incorporation of the exogenous fatty acids resulted in them comprising more than 65% of the total fatty acids in plasma membrane lipids. Inhibition of cell division in the presence of Cd(NO3)2 was accentuated by growth in the presence of a polyunsaturated fatty acid. Furthermore, susceptibility to Cd2+-induced plasma membrane permeabilisation increased with the degree of fatty acid unsaturation. Thus, during exposure to Cd2+, K+ efflux from 18:2- and 18:3-enriched cells was up to 2.5-fold or 3-fold greater, respectively than that from unsupplemented cells. In addition, reductions in cell viability during exposure to Cd2+ were most marked in polyunsaturated-fatty-acid-supplemented cells. At certain times, unsupplemented Cd2+-exposed cells displayed up to 7-fold greater viability than supplemented Cd2+-exposed cells. The study demonstrates that the toxicity of the redox-inactive metal Cd2+ towards S. cerevisiae becomes markedly amplified with increased cellular and plasma membrane fatty acid unsaturation. Received: 14 March 1997 / Received revision: 4 June 1997 / Accepted: 7 June 1997  相似文献   

11.
The content of unsaturated fatty acids in enterococcal cells has been found to have no essential relation to the composition of the culture medium. When cultivated in the same media, S. faecium had the degree of lipid unsaturation 1.5-2 times higher than S. faecalis. Mobile enterococci are sharply differentiated from immobile species by the content of cyclopropanic acid with 19 carbon atoms, constitute a heterogenous group and consist of at least 2 taxons, differing in the content of acids with 18 carbon atoms and the degree of lipid unsaturation.  相似文献   

12.
《Journal of Asia》2007,10(1):33-38
Cold acclimation and overwintering state can affect fatty acid compositions of insects. To determine compositional change of fatty acids during nondiapause and diapause stages, an experiment was conducted to investigate fatty acid constituents from whole body of C. suppressalis larvae. Five most abundant fatty acids were found to be palmitoleic (35–58%), palmitic (18–44%), oleic (14–23%), stearic (0.5–2.5%) and linoleic acid (0.4–2%). However, linolenic, erucic, lauric and myristic acid were found at lower level. Saturated fatty acids significantly decreased and conversely unsaturated fatty acids increased from August (pre-diapause) to October (initiation of diapause). The increase in seasonal cold hardiness during cold acclimation, exposed at −15°C for 24 h, was related to degree of fatty acid unsaturation. The elevation of palmitoleic acid content at low temperature resulted in an increase in the overall degree of unsaturation in the whole body. These results indicated the importance of unsaturated fatty acids composition to prepare larvae entering diapause phase.  相似文献   

13.
The nature of the interactions between cytochrome c oxidase and the phospholipids in mitochondrial membranes has been investigated by varying the nature of the fatty acyl components of Saccharomyces cerevisiae. A double fatty acid yeast mutant, FAI-4C, grown in combinations of unsaturated (oleic, linoleic, linolenic, and eicosenoic) and saturated (lauric and palmitic) fatty acids, was employed to modify mitochondrial membranes. The supplemented fatty acids constituted a unique combination of different acyl chain lengths with varying degrees of unsaturation which were subsequently incorporated into mitochondrial phospholipids. Phosphatidylethanolamine and cardiolipin, the predominant phospholipids of the inner mitochondrial membrane, were characterized by their high levels of supplemented unsaturated fatty acids. Increasing the chain length or the degree of unsaturation of mitochondrial membrane phospholipids had no effect on altering the nature of the phospholipid polar head group but did result in a profound change on the specific activity of cytochrome c oxidase. When studied under conditions of different ionic strengths and pHs the enzyme's activity, as documented by Eadie-Hofstee plots, showed biphasic kinetics. The kinetic parameters for the low affinity reaction were greatly influenced by the changes in the membrane fatty acids and only marginal effects were noted at the high affinity reaction site. The discontinuities in the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene, monitored at increasing temperatures, suggested that changes in membrane fluidity were conditioned by alterations in mitochondrial membrane fatty acid constituents. These results indicate that the lipid changes affecting the low affinity binding site of cytochrome c oxidase may be the result of lipid-protein interactions which lead to enzyme conformational changes or may be due to gross changes in membrane fluidity. It may, therefore, follow that this enzyme site may be embedded in or be juxtaposed to the outer surface of the inner mitochondrial membrane bilayer in contrast to the high affinity site which has been shown to be significantly above the membrane plane.  相似文献   

14.
The degree of fatty acid unsaturation and average chain length are closely similar for microsomal membranes from exponential-phase trophozoites and cysts ofAcanthamoeba castellanii despite significant differences in fatty acid composition. The same trend was apparent for total fatty acids extracted from whole cells. The observations suggest that the organism regulates these lipid parameters during differentiation in order to maintain optimum membrane lipid viscosity, and are consistent with previous electron spin resonance measurements indicating that the fluidity of microsomal membranes does not change during encystment. About 75% of the microsomal fatty acids are unsaturated for both cysts and amoebae. Wide-angle X-ray diffraction of phospholipid liposomes prepared from lipid extracts of the membranes has indicted that this high level of unsaturation renders the phospholipid exclusively liquid-crystalline at temperatures as low as 9°C for rough microsomes and-1.5°C for smooth microsomes. Thus, by retaining a high proportion of unsaturated fatty acids throughout its differentiation cycle, the organism gains some protection in its natural soil habitat against lateral phase separation of membrane lipids.  相似文献   

15.
Temperature adaptation in yeasts: the role of fatty acids   总被引:17,自引:0,他引:17  
Studies on the yeasts Candida oleophila, Candida utilis, Lipomyces starkeyi, Rhodosporidium toruloides and Saccharomyces cerevisiae revealed the existence of three different temperature adaptation responses involving changes in fatty acid composition. These conclusions were drawn by determining the growth rates, total cellular fatty acid content, fatty acid composition, degree of unsaturation, and the mean chain length of fatty acids over a range of growth temperatures. Within temperatures permitting growth, there were no changes in the major fatty acids of any of the yeasts, but the absolute amounts and relative compositions of the fatty acids did alter. In S. cerevisiae there were temperature-induced changes in the mean fatty acid chain length, whereas in R. toruloides there were changes in the degree of unsaturation. C. oleophila, C. utilis and L. starkeyi showed both responses, depending on whether the growth temperature was above or below 20-26 degrees C. Below 20-26 degrees C temperature-dependent changes were observed in the mean chain length whereas above 20-26 degrees C there were changes in the degree of unsaturation.  相似文献   

16.
Using ESR-spin probes and 1H-NMR-spectroscopy methods the effect of alpha-tocopherol on liposome microviscosity has been studied. alpha-Tocopherol has been shown to remove the chaotropic action of free fatty acids on bilayer. The stabilization effect found has a common nature and does not depend on the chemical structure of the phopsholipid functional polar groups, the unsaturation degree of free fatty acids as well as fatty acids residua entering into phospholipid composition. Analog of alpha-tocopherol without phytol chain 2,2,5,7,8-penthamethyl-6-oxychroman does not show the stabilizing effect on the microviscosity of lipid bilayer under the action of free fatty acids. It indicates that both chromanol nucleus and phytol chain of alpha-tocopherol molecule are necessary for stabilizing action. The data obtained allow to suppose that the interaction of alpha-tocopherol with free fatty acids may be one of the molecular mechanisms of lipid bilayer microvicosity stabilization.  相似文献   

17.
A low rate of mitochondrial ROS production (mitROSp) and a low degree of fatty acid unsaturation are characteristic traits of long-lived animals and can be obtained in a single species by methionine restriction (MetR) or atenolol (AT) treatments. However, simultaneous application of both treatments has never been performed. In the present investigation it is shown that MetR lowers mitROSp and complex I content. Both the MetR and the AT treatments lower protein oxidative modification and oxidative damage to mtDNA and the fatty acid unsaturation degree in rat heart mitochondria. The decrease in fatty acid unsaturation seems to be due, at least in part, to decreases in desaturase and elongase activities or peroxisomal β-oxidation. Furthermore, the phosphorylation of extracellular signal-regulated kinase (ERK) was stimulated by MetR and AT. The decrease in membrane fatty acid unsaturation and protein oxidation, and the changes in fatty acids and p-ERK showed additive effects of both treatments. In addition, the increase in mitROSp induced by AT observed in the present investigation was totally avoided with the combined MetR + AT treatment. It is concluded that the simultaneous treatment with MetR plus atenolol is more beneficial than either single treatment alone to lower oxidative stress in rat heart mitochondria, analogously to what has been reported in long-lived animal species.  相似文献   

18.
The selective mobilization of fatty acids from white fat cells depends on their molecular structure, in particular the degree of unsaturation. The present study was designed to examine if the release of fatty acids by hormone-sensitive lipase (HSL) in vitro i) is influenced by the amount of unsaturation, ii) depends on the temperature, and iii) could explain the selective pattern of fatty acid mobilization and notably the preferential mobilization of certain highly unsaturated fatty acids. Recombinant rat and human HSL were incubated with a lipid emulsion. The hydrolysis of 35 individual fatty acids, ranging in chain length from 12 to 24 carbon atoms and in unsaturation from 0 to 6 double bonds was measured. Fatty acid composition of in vitro released NEFA was compared with that of fat cell triacylglycerols (TAG), the ratio % NEFA/% TAG being defined as the relative hydrolysis. The relative hydrolysis of individual fatty acids differed widely, ranging from 0.44 (24:1n-9) to 1.49 (18:1n-7) with rat HSL, and from 0.38 (24:1n-9) to 1.67 (18:1n-7) with human HSL. No major difference was observed between rat and human HSL. The relative release was dependent on the number of double bonds according to chain length. The amount of fatty acid released by recombinant rat HSL was decreased but remained robust at 4 degrees C compared with 37 degrees C, and the relative hydrolysis of some individual fatty acids was affected. The relative hydrolysis of fatty acids moderately, weakly, and highly mobilized by adipose tissue in vivo was similar and close to unity in vitro. We conclude that i) the release of fatty acids by HSL is only slightly affected by their degree of unsaturation, ii) the ability of HSL to efficiently and selectively release fatty acids at low temperature could reflect a cold adaptability for poikilotherms or hibernators when endogenous lipids are needed, and iii) the selectivity of fatty acid hydrolysis by HSL does not fully account for the selective pattern of fatty acid mobilization, but could contribute to explain the preferential mobilization of some highly unsaturated fatty acids compared with others.  相似文献   

19.
We earlier reported that the viability and lipid composition of Mucor hiemalis F-1156 sporangiospores, as well as their capacity to develop yeast-like cells, depend on the age of the spore-forming culture [1]. With the increase in the time of the culture growth, sporangiospores exhibit a decrease in the levels of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, cardiolipin, and reserve lipids, as well as in the degree of fatty acid unsaturation, whereas the level of glycolipids increases. However, sterol composition was not been studied. Sterols are involved in morphogenetic processes [2, 3], and therefore we suggested that sporangiospores from senescent cultures, which, upon germination, develop mycelium and yeast-like cells, may exhibit a distinctive sterol pattern, along with the changed composition of fatty acids and polar and neutral lipids.  相似文献   

20.
A series of C18 and C22 fatty acids, with varying degrees of unsaturation, were tested for their ability to alter the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine. Lowering the pH from 7.4 to 6.4 greatly decreased the bilayer to hexagonal phase transition temperature of fatty acid-phosphatidylethanolamine mixtures. At pH 7.4, increasing unsaturation of the fatty acid generally increased their hexagonal phase-forming ability. However, oleic acid had somewhat greater hexagonal phase-forming capacity and docosahexaenoic acid somewhat less than would be expected for their degree of unsaturation. At pH 6.4 the difference among fatty acids was small and except for stearic acid, all had similar hexagonal phase forming tendencies. The fatty acids cause acid-induced fusion. There is little effect of fatty acid structure on membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号