首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Storf S  Stauber EJ  Hippler M  Schmid VH 《Biochemistry》2004,43(28):9214-9224
Until now, more genes of the light-harvesting antenna of higher-plant photosystem I (PSI) than proteins have been described. To improve our understanding of the composition of light-harvesting complex I (LHCI) of tomato (Lycopersicon esculentum), we combined one- and two-dimensional (1-D and 2-D, respectively) gel electrophoresis with immunoblotting and tandem mass spectrometry (MS/MS). Separation of PSI with high-resolution 1-D gels allowed separation of five bands attributed to proteins of LHCI. Immunoblotting with monospecific antibodies and MS/MS analysis enabled the correct assignment of the four prominent bands to light-harvesting proteins Lhca1-4. The fifth band was recognized by only the Lhca1 antibody. Immunodetection as well as mass spectrometric analysis revealed that these protein bands contain not only the eponymous protein but also other Lhca proteins, indicating a heterogeneous protein composition of Lhca bands. Additionally, highly sensitive MS/MS allowed detection of a second Lhca4 isoform and of Lhca5. These proteins had not been described before on the protein level in higher plants. Two-dimensional gel electrophoresis revealed an even more diverse composition of individual Lhca proteins than was apparent from 1-D gels. For each of the four prominent Lhca proteins, four to five isoforms with different isoelectric points could be identified. In the case of Lhca1, Lhca4, and Lhca3, additional isoforms with slightly differing molecular masses were identified. Thus, we were able to detect four to ten isoforms of each individual Lhca protein in PSI. Reasons for the origin of Lhca heterogeneity are discussed. The observed variety of Lhca proteins and their isoforms is of particular interest in the context of the recently published crystal structure of photosystem I from pea, which showed the presence of only four Lhca proteins per photosystem I. These findings indicate that several populations of photosystem I that differ in their Lhca composition may exist.  相似文献   

2.
The light-harvesting antenna of higher plant photosystem (PS) I is known to be composed of four different types of light-harvesting complex (LHC) proteins (Lhca1-4). However, the genomic sequence of Arabidopsis thaliana contains open reading frames coding for two additional LHC type proteins (Lhca5-6) that are presumably associated with PSI. While Lhca6 might not be expressed at all, ESTs have been detected for the Lhca5 gene in Arabidopsis and a number of other plant species. Here we demonstrate the presence of the Lhca5 gene product in the thylakoid membrane of Arabidopsis as an additional type of Lhca-protein associated with PSI. Lhca5 seems to be regulated differently from the other LHC proteins since Lhca5 mRNA levels increase under high light conditions. Analyses reported here of Lhca5 in plants lacking individual Lhca1-4 proteins show that it is more abundant in plants lacking Lhca1/4, and suggest that it interacts in a direct physical fashion with Lhca2 or Lhca3. We propose that Lhca5 binds chlorophylls in a similar fashion to the other Lhca proteins and is associated with PSI only in sub-stoichiometric amounts.  相似文献   

3.
We report a time-resolved fluorescence spectroscopy characterization of photosystem I (PSI) particles prepared from Arabidopsis lines with knock-out mutations against the peripheral antenna proteins of Lhca1 or Lhca4. The first mutant retains Lhca2 and Lhca3 while the second retains one other light-harvesting protein of photosystem I (Lhca) protein, probably Lhca5. The results indicate that Lhca2/3 and Lhca1/4 each provides about equally effective energy transfer routes to the PSI core complex, and that Lhca5 provides a less effective energy transfer route. We suggest that the specific location of each Lhca protein within the PSI-LHCI supercomplex is more important than the presence of so-called red chlorophylls in the Lhca proteins.  相似文献   

4.
Lucinski R  Schmid VH  Jansson S  Klimmek F 《FEBS letters》2006,580(27):6485-6488
In the outer antenna (LHCI) of higher plant photosystem I (PSI) four abundantly expressed light-harvesting protein of photosystem I (Lhca)-type proteins are organized in two heterodimeric domains (Lhca1/Lhca4 and Lhca2/Lhca3). Our cross-linking studies on PSI-LHCI preparations from wildtype Arabidopsis and pea plants indicate an exclusive interaction of the rarely expressed Lhca5 light-harvesting protein with LHCI in the Lhca2/Lhca3-site. In PSI particles with an altered LHCI composition Lhca5 assembles in the Lhca1/Lhca4 site, partly as a homodimer. This flexibility indicates a binding-competitive model for the LHCI assembly in plants regulated by molecular interactions of the Lhca proteins with the PSI core.  相似文献   

5.
The light-harvesting proteins (Lhca) of photosystem I (PSI) from four monocot and five dicot species were extracted from plant material, separated by reversed-phase high-performance liquid chromatography (HPLC) and subsequently identified on the basis of their intact molecular masses upon on-line hyphenation with electrospray ionization mass spectrometry. Although their migration behavior in gel electrophoresis was very similar, the elution times among the four antenna types in reversed-phase-HPLC differed significantly, even more than those observed for the light-harvesting proteins of photosystem II. Identification of proteins is based on the good agreement between the measured intact molecular masses and the values calculated on the basis of their nucleotide-derived amino acid sequences, which makes the intact molecular masses applicable as intact mass tags. These values match excellently for Arabidopsis, most probably because of the availability of high-quality DNA sequence data. In all species examined, the four antennae eluted in the same order, namely Lhca1 > Lhca3 > Lhca4 > Lhca2. These characteristic patterns enabled an unequivocal assignment of the proteins in preparations from different species. Interestingly, in all species examined, Lhca1 and Lhca2 were present in two or three isoforms. A fifth antenna protein, corresponding to the Lhca6 gene, was found in tomato (Lycopersicon esculentum). However PSI showed a lower heterogeneity than photosystem II. In most plant species, Lhca2 and Lhca4 proteins are the most abundant PSI antenna proteins. The HPLC method used in this study was found to be highly reproducible, and the chromatograms may serve as a highly confident fingerprint for comparison within a single and among different species for future studies of the PSI antenna.  相似文献   

6.
We have investigated the structure of the higher plant light harvesting complex of photosystem I (LHCI) by analyzing PSI-LHCI particles isolated from a set of Arabidopsis plant lines, each lacking a specific Lhca (Lhca1-4) polypeptide. Functional antenna size measurements support the recent finding that there are four Lhca proteins per PSI in the crystal structure [Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635]. According to HPLC analyses the number of pigment molecules bound within the LHCI is higher than expected from reconstitution studies or analyses of isolated native LHCI. Comparison of the spectra of the particles from the different lines reveals chlorophyll absorption bands peaking at 696, 688, 665, and 655 nm that are not present in isolated PSI or LHCI. These bands presumably originate from "gap" or "linker" pigments that are cooperatively coordinated by the Lhca and/or PSI proteins, which we have tentatively localized in the PSI-LHCI complex.  相似文献   

7.
The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx was studied in an in vitro assay using partially purified Vx de-epoxidase isolated from spinach thylakoids. All four LHCI proteins exhibited unique de-epoxidation characteristics. An almost complete Vx conversion to Zx was observed only in Lhca3, whereas Zx formation in the other LHCI proteins decreased in the order Lhca4 > Lhca1 > Lhca2. Most likely, these differences in Vx de-epoxidation were related to the different accessibility of the respective carotenoid binding sites in the distinct antenna proteins. The results indicate that Vx bound to site V1 and N1 is easily accessible for de-epoxidation, whereas Vx bound to L2 is only partially and/or with the slower kinetics convertible to Zx. The de-epoxidation properties determined for the monomeric recombinant proteins were consistent with those obtained for isolated native LHCI-730 and LHCI-680 in the same in vitro assay and the de-epoxidation state found under in vivo conditions in native LHCIs.  相似文献   

8.
This review centers on the structural and functional organization of the light-harvesting system in the peripheral antenna of Photosystem I (LHC I) and its energy coupling to the Photosystem I (PS I) core antenna network in view of recently available structural models of the eukaryotic Photosystem I–LHC I complex, eukaryotic LHC II complexes and the cyanobacterial Photosystem I core. A structural model based on the 3D homology of Lhca4 with LHC II is used for analysis of the principles of pigment arrangement in the LHC I peripheral antenna, for prediction of the protein ligands for the pigments that are unique for LHC I and for estimates of the excitonic coupling in strongly interacting pigment dimers. The presence of chlorophyll clusters with strong pigment–pigment interactions is a structural feature of PS I, resulting in the characteristic red-shifted fluorescence. Analysis of the interactions between the PS I core antenna and the peripheral antenna leads to the suggestion that the specific function of the red pigments is likely to be determined by their localization with respect to the reaction center. In the PS I core antenna, the Chl clusters with a different magnitude of low energy shift contribute to better spectral overlap of Chls in the reaction center and the Chls of the antenna network, concentrate the excitation around the reaction center and participate in downhill enhancement of energy transfer from LHC II to the PS I core. Chlorophyll clusters forming terminal emitters in LHC I are likely to be involved in photoprotection against excess energy.  相似文献   

9.
We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls.  相似文献   

10.
Green plant photosystem I (PSI) consists of at least 18 different protein subunits. The roles of some of these protein subunits are not well known, in particular those that do not occur in the well characterized PSI complexes from cyanobacteria. We investigated the spectroscopic properties and excited-state dynamics of isolated PSI-200 particles from wild-type and mutant Arabidopsis thaliana plants devoid of the PSI-G, PSI-K, PSI-L, or PSI-N subunit. Pigment analysis and a comparison of the 5 K absorption spectra of the various particles suggests that the PSI-L and PSI-H subunits together bind approximately five chlorophyll a molecules with absorption maxima near 688 and 667 nm, that the PSI-G subunit binds approximately two red-shifted beta-carotene molecules, that PSI-200 particles without PSI-K lack a part of the peripheral antenna, and that the PSI-N subunit does not bind pigments. Measurements of fluorescence decay kinetics at room temperature with picosecond time resolution revealed lifetimes of ~0.6, 5, 15, 50, 120, and 5000 ps in all particles. The 5- and 15-ps phases could, at least in part, be attributed to the excitation equilibration between bulk and red chlorophyll forms, though the 15-ps phase also contains a contribution from trapping by charge separation. The 50- and 120-ps phases predominantly reflect trapping by charge separation. We suggest that contributions from the core antenna dominate the 15-ps trapping phase, that those from the peripheral antenna proteins Lhca2 and Lhca3 dominate the 50-ps phase, and that those from Lhca1 and Lhca4 dominate the 120-ps phase. In the PSI-200 particles without PSI-K or PSI-G protein, more excitations are trapped in the 15-ps phase and less in 50- and 120-ps phases, which is in agreement with the notion that these subunits are involved in the interaction between the core and peripheral antenna proteins.  相似文献   

11.
Pigment binding of photosystem I light-harvesting proteins   总被引:2,自引:0,他引:2  
Light-harvesting complexes (LHC) of higher plants are composed of at least 10 different proteins. Despite their pronounced amino acid sequence homology, the LHC of photosystem II show differences in pigment binding that are interpreted in terms of partly different functions. By contrast, there is only scarce knowledge about the pigment composition of LHC of photosystem I, and consequently no concept of potentially different functions of the various LHCI exists. For better insight into this issue, we isolated native LHCI-730 and LHCI-680. Pigment analyses revealed that LHCI-730 binds more chlorophyll and violaxanthin than LHCI-680. For the first time all LHCI complexes are now available in their recombinant form; their analysis allowed further dissection of pigment binding by individual LHCI proteins and analysis of pigment requirements for LHCI formation. By these different approaches a correlation between the requirement of a single chlorophyll species for LHC formation and the chlorophyll a/b ratio of LHCs could be detected, and indications regarding occupation of carotenoid-binding sites were obtained. Additionally the reconstitution approach allowed assignment of spectral features observed in native LHCI-680 to its components Lhca2 and Lhca3. It is suggested that excitation energy migrates from chlorophyll(s) fluorescing at 680 (Lhca3) via those fluorescing at 686/702 nm (Lhca2) or 720 nm (Lhca3) to the photosystem I core chlorophylls.  相似文献   

12.
Peripheral chlorophyll a/b binding antenna of photosystem I (LHCI) from green algae and higher plants binds specific low energy absorbing chlorophylls (red pigments) that give rise to a unique red-shifted emission. A three-dimensional structural model of the Lhca4 polypeptide from the LHCI from higher plants was constructed on the basis of comparative sequence analysis, secondary structure prediction, and homology modeling using LHCII as a template. The obtained model of Lhca4 helps to visualize protein ligands to nine chlorophylls (Chls) and three potential His residues to extra Chls. Central domain of the Lhca4 comprising the first (A) and the third (C) transmembrane (TM) helices that binds 6 Chl molecules and two carotenoids is conserved structurally, whereas the interface between the first and the second TM helices and the outer surface of the second TM helix differ significantly among the LHCI and LHCII polypeptides. The model of Lhca4 predicts a histidine residue in the second TM helix, a potential binding site for extra Chl in close proximity to Chls a5 and b5 (labeling by Kühlbrandt). The interpigment interactions in the formed pigment cluster are suggested to cause a red spectral shift in absorption and emission. Modeling of the LHCI-730 heterodimer based on the model structures of Lhca1 and Lhca4 allowed us to suggest potential sites of pigment-pigment interactions that might be formed upon heterodimerization or docking of the LHCI dimers to the surface of PSI.  相似文献   

13.
A preparation consisting of isolated dimeric peripheral antenna complexes from green plant photosystem I (light-harvesting complex I or LHCI) has been characterized by means of (polarized) steady-state absorption and fluorescence spectroscopy at low temperatures. We show that this preparation can be described reasonably well by a mixture of two types of dimers. In the first dimer about 10% of all Q(y)() absorption of the chlorophylls arises from two chlorophylls with absorption and emission maxima at about 711 and 733 nm, respectively, whereas in the second about 10% of the absorption arises from two chlorophylls with absorption and emission maxima at about 693 and 702 nm, respectively. The remaining chlorophylls show spectroscopic properties comparable to those of the related peripheral antenna complexes of photosystem II. We attribute the first dimer to a heterodimer of the Lhca1 and Lhca4 proteins and the second to a hetero- or homodimer of the Lhca2 and/or Lhca3 proteins. We suggest that the chlorophylls responsible for the 733 nm emission (F-730) and 702 nm emission (F-702) are excitonically coupled dimers and that F-730 originates from one of the strongest coupled pair of chlorophylls observed in nature.  相似文献   

14.
Light-harvesting antenna system possesses an inherent property of photoprotection. The single-helix proteins found in cyanobacteria play role in photoprotection and/or pigment metabolism. The photoprotective functions are also manifested by the two- and four-helix proteins. The photoprotection mechanism evolved earlier to the mechanism of light-harvesting of the antenna complex. Here, the light-harvesting complex genes of photosystems I and II from Arabidopsis are enlisted, and almost similar set of genes are identified in rice. Also, the three-helix early light-inducible proteins (ELIPs), two-helix stress-enhanced proteins (SEPs) and one-helix high light-inducible proteins [one-helix proteins (OHPs)] are identified in rice. Interestingly, two independent genomic loci encoding PsbS protein are also identified with implications on additional mode of non-photochemical quenching (NPQ) mechanism in rice. A few additional LHC-related genes are also identified in rice (LOC_Os09g12540, LOC_Os02g03330). This is the first report of identification of light-harvesting complex genes and light-inducible genes in rice.Key words: Lhca and Lhcb proteins, Lhc proteins evolution, light-inducible proteins, protein alignment, PsbSThe light-harvesting proteins are present in different taxa. The proteins of light-harvesting systems from higher plants, cyano-bacteria, purple bacteria and green sulphur bacteria share no sequence similarity however little structural similarity can be seen.1 Apparently, the light-harvesting systems in these different taxa might have evolved independently from each other.1 To enable efficient transfer of excitation energy into the reaction centers, where charge separation takes place, different proteins are recruited in order to coordinate the photosynthetic pigment molecules. The light-harvesting and light dissipation are tightly coupled processes involving the higher plant light-harvesting antenna. Here, genome-wide analysis of the light-harvesting chlorophyll a/b-binding proteins and light-inducible proteins in Arabidopsis thaliana L. and Oryza sativa L. (rice) is conducted. This study wherein genes coding for antenna proteins are identified and named can be used as a nomenclature guide to the light-harvesting complex gene family members and their relatives in rice.  相似文献   

15.
The red-most fluorescence emission of photosystem I (733 nm at 4 K) is associated with the Lhca4 subunit of the antenna complex. It has been proposed that this unique spectral feature originates from the low energy absorption band of an excitonic interaction involving chlorophyll A5 and a second chlorophyll a molecule, probably B5 (Morosinotto, T., Breton, J., Bassi, R., and Croce, R. (2003) J. Biol. Chem. 278, 49223-49229). Because of the short distances between chromophores in Lhc proteins, the possibility that other pigments are involved in the red-shifted spectral forms could not be ruled out. In this study, we have analyzed the pigment-pigment interactions between nearest neighboring chromophores in Lhca4. This was done by deleting individual chlorophyll binding sites by mutagenesis, and analyzing the changes in the spectroscopic properties of recombinant proteins refolded in vitro. The red-shifted (733 nm) fluorescence peak, the major target of this analysis, was lost upon mutations affecting sites A4, A5, and B5 and was modified by mutating site B6. In agreement with the shorter distance between chlorophylls A5 and B5 (7.9 A) versus A4 and A5 (12.2 A) in Lhca4 (Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635), we conclude that the low energy spectral form originates from an interaction involving pigments in sites A5 and B5. Mutation at site B6, although inducing a 15-nm blue-shift of the emission peak, maintains the red-shifted emission. This implies that chromophores responsible for the interaction are conserved and suggests a modification in the pigment organization. Besides the A5-B5 pair, evidence for additional pigment-pigment interactions between chlorophylls in sites B3-A3 and B6-A6 was obtained. However, these features do not affect the red-most spectral form responsible for the 733-nm fluorescence emission band.  相似文献   

16.
We report a structural characterization by electron microscopy of green plant photosystem I solubilized by the mild detergent n-dodecyl-alpha-D-maltoside. It is shown by immunoblotting that the isolated complexes contain all photosystem I core proteins and all peripheral light-harvesting proteins. The electron microscopic analysis is based on a large data set of 14 000 negatively stained single-particle projections and reveals that most of the complexes are oval-shaped monomers. The monomers have a tendency to associate into artificial dimers, trimers, and tetramers in which the monomers are oppositely oriented. Classification of the dimeric complexes suggests that some of the monomers lack a part of the peripheral antenna. On the basis of a comparison with projections from trimeric photosystem I complexes from cyanobacteria, we conclude that light-harvesting complex I only binds to the core complex at the side of the photosystem I F/J subunits and does not cause structural hindrances for the type of trimerization observed in cyanobacterial photosystem I.  相似文献   

17.
Iron deficiency induces a remodeling of the photosynthetic apparatus in Chlamydomonas reinhardtii. In this study we showed that a key mechanistic event in the remodeling process of photosystem I (PSI) and its associated light-harvesting proteins (LHCI) is the N-terminal processing of Lhca3. N-terminal processing of Lhca3 is documented independently by two-dimensional gel electrophoresis and tandem mass spectrometric (MS/MS) analysis as well as by quantitative comparative MS/MS peptide profiling using isotopic labeling of proteins. Dynamic remodeling of the LHCI complex under iron deficiency is further exemplified by depletion of Lhca5 and up-regulation of Lhca4 and Lhca9 polypeptides in respect to photosystem I. Most importantly, the induction of N-terminal processing of Lhca3 by progression of iron deficiency correlates with the functional drop in excitation energy transfer efficiency between LHCI and PSI as assessed by low temperature fluorescence emission spectroscopy. Using an RNA interference (RNAi) strategy, we showed that the truncated form of Lhca3 is essential for the structural stability of LHCI. Depletion of Lhca3 by RNAi strongly impacted the efficiency of excitation energy transfer between PSI and LHCI, as is the case for iron deficiency. However, in contrast to iron deficiency, comparative MS/MS peptide profiling using isotopic labeling of proteins demonstrated that RNAi depletion of Lhca3 caused strong reduction of almost all Lhca proteins in isolated PSI particles.  相似文献   

18.
The plastid-encoded psaJ gene encodes a hydrophobic low-molecular-mass subunit of photosystem I (PSI) containing one transmembrane helix. Homoplastomic transformants with an inactivated psaJ gene were devoid of PSI-J protein. The mutant plants were slightly smaller and paler than wild-type because of a 13% reduction in chlorophyll content per leaf area caused by an approximately 20% reduction in PSI. The amount of the peripheral antenna proteins, Lhca2 and Lhca3, was decreased to the same level as the core subunits, but Lhca1 and Lhca4 were present in relative excess. The functional size of the PSI antenna was not affected, suggesting that PSI-J is not involved in binding of light-harvesting complex I. The specific PSI activity, measured as NADP(+) photoreduction in vitro, revealed a 55% reduction in electron transport through PSI in the mutant. No significant difference in the second-order rate constant for electron transfer from reduced plastocyanin to oxidized P700 was observed in the absence of PSI-J. Instead, a large fraction of PSI was found to be inactive. Immunoblotting analysis revealed a secondary loss of the luminal PSI-N subunit in PSI particles devoid of PSI-J. Presumably PSI-J affects the conformation of PSI-F, which in turn affects the binding of PSI-N. This together renders a fraction of the PSI particles inactive. Thus, PSI-J is an important subunit that, together with PSI-F and PSI-N, is required for formation of the plastocyanin-binding domain of PSI. PSI-J is furthermore important for stability or assembly of the PSI complex.  相似文献   

19.
The biological conversion of light energy into chemical energy is performed by a flexible photosynthetic machinery located in the thylakoid membranes. Photosystems I and II (PSI and PSII) are the two complexes able to harvest light. PSI is the last complex of the electron transport chain and is composed of multiple subunits: the proteins building the catalytic core complex that are well conserved between oxygenic photosynthetic organisms, and, in green organisms, the membrane light‐harvesting complexes (Lhc) necessary to increase light absorption. In plants, four Lhca proteins (Lhca1–4) make up the antenna system of PSI, which can be further extended to optimize photosynthesis by reversible binding of LHCII, the main antenna complex of photosystem II. Here, we used biochemistry and electron microscopy in Arabidopsis to reveal a previously unknown supercomplex of PSI with LHCII that contains an additional Lhca1–a4 dimer bound on the PsaB–PsaI–PsaH side of the complex. This finding contradicts recent structural studies suggesting that the presence of an Lhca dimer at this position is an exclusive feature of algal PSI. We discuss the features of the additional Lhca dimer in the large plant PSI–LHCII supercomplex and the differences with the algal PSI. Our work provides further insights into the intricate structural plasticity of photosystems.  相似文献   

20.
The peripheral light-harvesting complex of Photosystem I consists of two subpopulations, LHC I-680 and LHC I-730. The latter is composed of the two apoproteins Lhca1 and Lhca4. Recently, reconstitution of monomeric LHC I using bacterially overexpressed Lhca1 or Lhca4 was achieved. In order to obtain insight into the structure requirements for formation of monomeric light-harvesting complexes, we produced a series of N- and C-terminal deletion mutants and used the overexpressed proteins for reconstitution experiments. We found the entire extrinsic N-terminal region dispensable for monomer formation in Lhca1 and Lhca4. Also at the C-terminus, both subunits revealed similarity since all amino acids up to the end of the fourth helix could be removed without abolishing monomer formation. In connection with former corresponding results for Lhcb1, the dispensability of these regions appears to be a general feature in LHC-formation. In LHC I, however, a stabilising effect can be ascribed to these regions since the yield of complexes was decreased. In the majority of the mutant LHC I versions no effect on pigment binding was detected. However, in the LHC with the most extensively N-terminally truncated mutant of Lhca4 a dramatic shift in the 77 K fluorescence emission to shorter wavelengths was observed. This suggests that chlorophylls involved in long wavelength fluorescence emission are located in the chlorophyll array located towards the stromal face of the thylakoid membrane assuming a pigment arrangement corresponding to that in LHC II and CP29. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号