首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional analysis of mRNA scavenger decapping enzymes   总被引:1,自引:0,他引:1  
Eukaryotic cells primarily utilize exoribonucleases and decapping enzymes to degrade their mRNA. Two major decapping enzymes have been identified. The hDcp2 protein catalyzes hydrolysis of the 5' cap linked to an RNA moiety, whereas the scavenger decapping enzyme, DcpS, functions on a cap structure lacking the RNA moiety. DcpS is a member of the histidine triad (HIT) family of hydrolases and catalyzes the cleavage of m7GpppN. HIT proteins are homodimeric and contain two conserved 100-amino-acid HIT fold domains with independent active sites that are each sufficient to bind and hydrolyze cognate substrates. We carried out a functional characterization of the DcpS enzyme and demonstrate that unlike previously described HIT proteins, DcpS is a modular protein that requires both the core HIT fold at the carboxyl-terminus and sequences at the amino-terminus of the protein for cap binding and hydrolysis. Interestingly, DcpS can efficiently compete for and hydrolyze the cap structure even in the presence of excess eIF4E, implying that DcpS could function to alleviate the accumulation of complexes between eIF4E and cap structure that would otherwise accumulate following mRNA decay. Using immunofluorescence microscopy, we demonstrate that DcpS is predominantly a nuclear protein, with low levels of detected protein in the cytoplasm. Furthermore, analysis of the endogenous hDcp2 protein reveals that in addition to the cytoplasmic foci, it is also present in the nucleus. These data reveal that both decapping enzymes are contained in the nuclear compartment, indicating that they may fulfill a greater function in the nucleus than previously appreciated.  相似文献   

2.
We utilized a series of pyrimidine analogues modified at O(2), N-3, and N(4)/O(4) to determine if two B family DNA polymerases, human DNA polymerase α and herpes simplex virus I DNA polymerase, choose whether to polymerize pyrimidine dNTPs using the same mechanisms they use for purine dNTPs. Removing O(2) of a pyrimidine dNTP vastly decreased the level of incorporation by these enzymes and also compromised fidelity in the case of C analogues, while removing O(2) from the templating base had more modest effects. Removing the Watson-Crick hydrogen bonding groups of N-3 and N(4)/O(4) greatly impaired polymerization, both of the resulting dNTP analogues and of natural dNTPs opposite these pyrimidine analogues when present in the template strand. Thus, the Watson-Crick hydrogen bonding groups of a pyrimidine clearly play an important role in enhancing correct dNTP polymerization but are not essential for preventing misincorporation. These studies also indicate that DNA polymerases recognize bases extremely asymmetrically, both in terms of whether they are a purine or pyrimidine and whether they are in the template or are the incoming dNTP. The mechanistic implications of these results with regard to how polymerases discriminate between right and wrong dNTPs are discussed.  相似文献   

3.
Liu H  Rodgers ND  Jiao X  Kiledjian M 《The EMBO journal》2002,21(17):4699-4708
We recently demonstrated that the major decapping activity in mammalian cells involves DcpS, a scavenger pyrophosphatase that hydrolyzes the residual cap structure following 3' to 5' decay of an mRNA. The association of DcpS with 3' to 5' exonuclease exosome components suggests that these two activities are linked and there is a coupled exonucleolytic decay-dependent decapping pathway. We purified DcpS from mammalian cells and identified the cDNA encoding a novel 40 kDa protein possessing DcpS activity. Consistent with purified DcpS, the recombinant protein specifically hydrolyzed methylated cap analog but did not hydrolyze unmethylated cap analog nor did it function on intact capped RNA. Sequence alignments of DcpS from different organisms revealed the presence of a conserved hexapeptide, containing a histidine triad (HIT) sequence with three histidines separated by hydrophobic residues. Mutagenesis analysis revealed that the central histidine within the DcpS HIT motif is critical for decapping activity and defines the HIT motif as a new mRNA decapping domain, making DcpS the first member of the HIT family of proteins with a defined biological function.  相似文献   

4.
New analogues of 7-methylguanosine 5'-monophosphate (m7GMP) were synthesized with modified 5'-phosphate moieties by replacement of -O with -H, -CH3, or -NH2. Additional analogues were synthesized with 8-methyl- or 8-aminoguanine base substitutions or ring-opened ribose (2',3'-diol). These compounds were analyzed by 1H and 31P NMR for solution conformation. In addition, they were also analyzed for biological activity as analogues of mRNA 5'-caps by competition as inhibitors of translation in reticulocyte lysate. Substitution of oxygen on the 5'-monophosphate moiety by -H and -CH3 diminished the activity of the cap analogue as a competitive inhibitor; however, replacement by -NH2 did not diminish the activity of the analogue as an inhibitor. It was inferred from this result that cap binding proteins require a hydrogen bond acceptor as opposed to having an exclusive requirement for a second anionic group on the alpha-phosphate moiety. Inhibition results obtained with C8-substituted m7GMP analogues indicated that the 8-amino derivative was a better inhibitor than the 8-methyl derivative of m7GMP. The former is primarily anti whereas the latter is primarily syn with respect to glycosidic bond conformation. This result further supports the model that the anti conformation is the preferred form of the cap structure for interaction with cap binding proteins. The 2',3'-diol derivative of m7GMP was inactive as an inhibitor of translation.  相似文献   

5.
Lysates from normally growing (25 degrees C) or heat shocked (37 degrees C, 45 min) Drosophila melanogaster embryos were obtained and the effect of analogues of the mRNA 5'-terminal cap, m7G(5')ppp(5')N structure and of potassium ions on their endogenous protein synthesis activity was studied. At optimal concentration of KCH3COO (75-80 mM), protein synthesis in normal lysates is strongly inhibited by cap analogues (m7GpppG, m7GDP, and m7GMP). At the same ionic conditions, heat shock lysates translate preferentially the heat shock messengers, and this translation is almost unaffected by the cap analogues. In contrast, residual synthesis of normal proteins in heat shock lysates was reduced by these compounds. By lowering the concentration of potassium ions it was possible to gradually reverse the inhibitory effect of the cap analogues in normal lysates and also to increase specifically the translation of normal mRNAs in heat shock lysates. Translation of normal mRNAs is also partial but specifically rescued by supplementing heat shock lysates with polypeptide chain initiation factors partially purified from rabbit reticulocytes. These data are consistent with the notion that the failure of normal mRNAs to be translated under heat shock conditions might be due, at least to some extent, to the inactivation of polypeptide chain initiation factor(s) involved in the recognition of the mRNA 5'-terminal cap structure.  相似文献   

6.
Nucleotide cap analogues of 7-methylguanosine 5'-monophosphate (m7GMP) were synthesized in which the 7-methyl moiety was replaced with 7-ethyl (e7), 7-propyl (p7), 7-isopropyl (ip7), 7-butyl (b7), 7-isobutyl (ib7), 7-cyclopentyl (cp7), 7-(carboxymethyl) (cm7), 7-benzyl (bn7), 7-(2-phenylethyl) [7-(2-PhEt)], and 7-(1-phenylethyl) [7-(1-PhEt)]. These derivatives were assayed as competitive inhibitors of capped mRNA translation in reticulocyte lysate. We observed that N7 alkyl and alicyclic substituents larger than ethyl significantly decreased the inhibitory activity of these cap analogues presumably by decreasing their affinity for cap binding proteins, which participate in the initiation of translation. This result defined a maximum size for this class of N7 substituents in the nucleotide binding domain of cap binding proteins. Like m7GMP, the N7-substituted GMP derivatives synthesized in this study were found to be predominantly in the anti conformation as determined by proton NMR analyses. However, bn7GMP and 7-(2-PhEt)GMP, which have aromatic N7 substituents, were more effective than m7GMP as competitive inhibitors of translation. The increased affinity of bn7GMP for cap binding proteins was further examined by synthesis of beta-globin mRNA containing 5'-bn7G, 5'-m7G, or 5'-e7G cap structures. These modified mRNAs were tested as translation templates. Messenger RNA capped with bn7G was observed to increase the translation activity of the template 1.8-fold relative to that of its m7G-capped mRNA counterpart. By contrast, e7G-capped mRNA was 25% less active than m7G-capped mRNA.2+V photo-cross-linking of m7G-capped mRNA to cap binding proteins  相似文献   

7.
The fluorescence at 370 nm of the 7-methylguanosine residue (m7G) is found to be quenched when the base residue is involved in a stacking interaction with the adenosine residue in the cap structure m7G5' pppA of an eukaryotic mRNA. On the basis of the observed degree of quenching, the amounts of the stacked and unstacked forms in the cap structure have been determined at various temperatures and pH's. It has been found that at pH 6.2 effective enthalpy and entropy in the unstacked leads to stacked change are delta H degrees = 4.4 +/- 0.1 kcal/mole and delta S degrees = - 14.3 +/- 0.2 e.u., respectively. The pka value for the m7G residue is found to be 7.7 at 10 degrees C and 7.3 at 30 degrees C. The stacked structure seems to be less favourable in the deprotonated form that occurs in the higher pH solution. A similar analysis of some other cap structures indicates that the stacked form in m7G5' pppN structure is favourable if N is a purine nucleoside or a 2'-O-methylpyrimidine nucleoside but not for an unmethylated pyrimidine nucleoside.  相似文献   

8.
Most eukaryotic mRNAs are characterized by the presence of a 5'-terminal cap structure (m7GpppN), and removal of the cap or translation of capped mRNAs in the presence of cap analogues (m7G) results in most cases in a significant decrease in the translational efficiency of the mRNAs. One way of explaining the importance of the 5'-cap is that cap-binding proteins recognize the cap structure, destabilize the mRNA secondary structure, and thus allow the 40S ribosomal subunit to bind to the mRNA [Sonenberg, N., Guertin, D., Cleveland, D., & Trachsel, H. (1981) Cell (Cambridge, Mass.) 27, 563-572]. Our data and those of others indicate that the translational efficiency of alfalfa mosaic virus RNA 4 (AMV-4 RNA), a naturally capped RNA, is not affected significantly by cap analogues or by removal of the cap. In order to examine the potential relationship between the function of the cap structure and secondary structure at the 5'-mRNA terminus, partial enzymatic digestion of capped AMV-4 RNA with single strand specific and double strand specific nucleases has been performed, and the experimental data have been compared with computer-generated models of AMV-4 secondary structure. In addition, the in vitro translatability of AMV-4 has been examined as a function of increasing potassium concentration, conditions that are likely to increase mRNA secondary structure. The nuclease-digestion results demonstrate that under native ionic conditions, the 5'-terminus of AMV-4 RNA is predominantly single stranded, although computer modeling and double-strand nuclease digestions indicate that the 5'-terminus can form weak base pairs with internal regions of the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
DcpS (scavenger decapping enzyme) from nematode C. elegans readily hydrolyzes both monomethyl- and trimethylguanosine cap analogues. The reaction was followed fluorimetrically. The marked increase of fluorescence intensity after the cleavage of pyrophosphate bond in dinucleotides was used to determine K(m) and V(max)values. Kinetic parameters were similar for both classes of substrates and only slightly dependent on pH. The hydrolysis was strongly inhibited by methylene cap analogues (m(7)Gp(CH(2))ppG and m(7)Gpp(CH(2))pG) and less potently by ARCA (m(7,3' O)GpppG).  相似文献   

10.
11.
Fifty-eight analogues of the 5'-terminal 7-methylguanosine-containing cap of eukaryotic messenger RNA were synthesized and tested for their ability to inhibit in vitro protein synthesis. A new algorithm was developed for extracting KI, the dissociation constant for the cap analogue.eIF4E complex, from protein synthesis data. The results indicated that addition of a methyl group to the N2 of guanine produced more inhibitory compounds, but addition of a second methyl group to N2 decreased the level of inhibition dramatically. Aryl substitution at N7 improved the efficacy of guanine nucleoside monophosphate analogues. Substitution of the aromatic ring at the para position with methyl or NO2 groups abolished this effect, but substitution with Cl or F enhanced it. By contrast, aryl substitution at N7 in nucleoside di- or triphosphate analogues produced only minor effects, both positive and negative. By far the strongest determinants of inhibitory activity for cap analogues were phosphate residues. The beneficial effect of more phosphate residues was related more to anionic charge than to the number of phosphate groups per se. The second nucleotide residue in analogues of the form m7GpppN affected inhibitory activity in the order G > C > U > A, but there was no effect of 2'-O-modification. Opening the first ribose ring of m7GpppG analogues dramatically decreased activity, but alterations at the 2'-position of this ribose had no effect. Non-nucleotide-based cap analogues containing benzimidazole derivatives were inhibitory, though less so than those containing 7-methylguanine.  相似文献   

12.
Eukaryotic cells utilize DcpS, a scavenger decapping enzyme, to degrade the residual cap structure following 3'-5' mRNA decay, thereby preventing the premature decapping of the capped long mRNA and misincorporation of methylated nucleotides in nucleic acids. We report the structures of DcpS in ligand-free form and in a complex with m7GDP. apo-DcpS is a symmetric dimer, strikingly different from the asymmetric dimer observed in the structures of DcpS with bound cap analogues. In contrast, and similar to the m7GpppG-DcpS complex, DcpS with bound m7GDP is an asymmetric dimer in which the closed state appears to be the substrate-bound complex, whereas the open state mimics the product-bound complex. Comparisons of these structures revealed conformational changes of both the N-terminal swapped-dimeric domain and the cap-binding pocket upon cap binding. Moreover, Tyr273 in the cap-binding pocket displays remarkable conformational changes upon cap binding. Mutagenesis and biochemical analysis suggest that Tyr273 seems to play an important role in cap binding and product release. Examination of the crystallographic B-factors indicates that the N-terminal domain in apo-DcpS is inherently flexible, and in a dynamic state ready for substrate binding and product release.  相似文献   

13.
14.
Anand R  Kaminski PA  Ealick SE 《Biochemistry》2004,43(9):2384-2393
The structure of class I N-deoxyribosyltransferase from Lactobacillus helveticus was determined by X-ray crystallography. Unlike class II N-deoxyribosyltransferases, which accept either purine or pyrimidine deoxynucleosides, class I enzymes are specific for purines as both the donor and acceptor base. Both class I and class II enzymes are highly specific for deoxynucleosides. The class I structure reveals similarities with the previously determined class II enzyme from Lactobacillus leichmanni [Armstrong, S. A., Cook, W. J., Short, S. A., and Ealick, S. E. (1996) Structure 4, 97-107]. The specificity of the class I enzyme for purine deoxynucleosides can be traced to a loop (residues 48-62), which shields the active site in the class II enzyme. In the class I enzyme, the purine base itself shields the active site from the solvent, while the smaller pyrimidine base cannot. The structure of the enzyme with a bound ribonucleoside shows that the nucleophilic oxygen atom of Glu101 hydrogen bonds to the O2' atom, rendering it unreactive and thus explaining the specificity for 2'-deoxynucleosides. The structure of a ribosylated enzyme intermediate reveals movements that occur during cleavage of the N-glycosidic bond. The structures of complexes with substrates and substrate analogues show that the purine base can bind in several different orientations, thus explaining the ability of the enzyme to catalyze alternate deoxyribosylation at the N3 or N7 position.  相似文献   

15.
The methylated constituents of early adenovirus 2 mRNA were studied. RNA was isolated from polyribosomes of cells double labeled with [methyl-3H]methionine and 32PO4 from 2 to 7 g postinfection in the presence of cycloheximide. Cycloheximide ensures that methylation and processing are performed by preexisting host cell enzymes. RNA was fractionated into polyadenylic [poly(A)]+ and poly(A)- molecules using poly(U)-Sepharose, and undergraded virus-specific RNA was isolated by hybridization to viral DNA in 50% formamide at 37 degrees C. Viral mRNA was digested with RNase T2 and chromatographed on DEAE-Sephadex in 7 M urea. Two 3H-labeled RNase T2-resistant oligonucleotide fractions with charges between -5 and -6 were obtained, consistent with two classes of 5' terminal methyl "cap" structures, m7G(5')ppp(5')NmpNp (cap 1) and m7G(5')ppp(5')NmNmpNp (cap 2) (Nm is a ribose 2'-O-methylation). The putative cap 1 contains all the methylated constituents of cap 1 plus Cm. The molar ratios of m7G to 2'-O-methylnucleosides is about 1.0 for cap 1 and 0.5 for cap 2, consistent with the proposed cap structures. Most significant, compositional analysis indicates four different cap 1 structures and at least three different cap 2 structures. Thus there is a minimum of seven early viral mRNA species with different cap structures, unless each type of mRNA can have more than one 5' terminus. In addition to methylated caps, early mRNA contains internal base methylations, exclusively as m6A, as shown by analyses of the mononucleotide (-2 charge) fraction. m6A was present in the ratio of 1 mol of m6Ap per 450 nucleotides. Thus viral mRNA molecules contain two to three internal m6A residues per methyl cap, since there is on the average 1 cap per 1,250 nucleotides.  相似文献   

16.
The binding of the 5'-terminal cap analogues m7GpppG and m7GTP to wheat germ protein synthesis initiation factors eIF-4F and eIF-(iso)4F as a function of pH, ionic strength, and temperature is described. Equilibrium binding data indicate that eIF-4F and eIF-(iso)4F have different mechanisms for interacting with the 5'-cap structure, but the complexes formed between m7GpppG and wheat germ factor eIF-(iso)4F more closely resemble complexes formed between this cap analogue and either mammalian eIF-4E or eIF-4F. The binding of these initiation factors to the hypermethylated cap analogues m2,7GMP, m2,7GpppG, and m2,2,7GpppG is also investigated. The differences in affinity of eIF-4F and eIF-(iso)4F for the hypermethylated 5'-terminal cap structures suggest that these factors may have discriminatory activity.  相似文献   

17.
Complete removal of residual N-7 guanine cap from degraded messenger RNA is necessary to prevent accumulation of intermediates that might interfere with RNA processing, export, and translation. The human scavenger decapping enzyme, DcpS, catalyzes residual cap hydrolysis following mRNA degradation, releasing N-7 methyl guanosine monophosphate and 5'-diphosphate terminated cap or mRNA products. DcpS structures bound to m(7)GpppG or m(7)GpppA reveal an asymmetric DcpS dimer that simultaneously creates an open nonproductive DcpS-cap complex and a closed productive DcpS-cap complex that alternate via 30 A domain movements. Structural and biochemical analysis suggests an autoregulatory mechanism whereby premature decapping mRNA is prevented by blocking the conformational changes that are required to form a closed productive active site capable of cap hydrolysis.  相似文献   

18.
Chemical synthesis of a series of novel dinucleoside cap analogues, m7GpppN, where N is formycin A, 3'-O-methylguanosine, 9-beta-D-arabinofuranosyladenine, and isoguanosine, has been performed using our new methodology. The key reactions of pyrophosphate bonds formation were achieved in anhydrous dimethylformamide solutions employing the catalytic properties of zinc salts. Structures of the new cap analogues were confirmed by 1H NMR and 31p NMR spectra. The binding affinity of the new cap analogues for murine eIF4E(28-217) were determined spectroscopically showing the highest association constant for the analogue that contains formycin A.  相似文献   

19.
A spliced leader contributes the mature 5'ends of many mRNAs in trans-splicing organisms. Trans-spliced metazoan mRNAs acquire an m3(2,2,7)GpppN cap from the added spliced leader exon. The presence of these caps, along with the typical m7GpppN cap on non-trans-spliced mRNAs, requires that cellular mRNA cap-binding proteins and mRNA metabolism deal with different cap structures. We have developed and used an in vitro system to examine mRNA degradation and decapping activities in nematode embryo extracts. The predominant pathway of mRNA decay is a 3' to 5' pathway with exoribonuclease degradation of the RNA followed by hydrolysis of resulting mRNA cap by a scavenger (DcpS-like) decapping activity. Direct decapping of mRNA by a Dcp1/Dcp2-like activity does occur, but is approximately 15-fold less active than the 3' to 5' pathway. The DcpS-like activity in nematode embryo extracts hydrolyzes both m7GpppG and m3(2,2,7)GpppG dinucleoside triphosphates. The Dcp1/Dcp2-like activity in extracts also hydrolyzes these two cap structures at the 5' ends of RNAs. Interestingly, recombinant nematode DcpS differs from its human ortholog in its substrate length requirement and in its capacity to hydrolyze m3(2,2,7)GpppG.  相似文献   

20.
The 5' end of the flavivirus plus-sense RNA genome contains a type 1 cap (m(7)GpppAmG), followed by a conserved stem-loop structure. We report that nonstructural protein 5 (NS5) from four serocomplexes of flaviviruses specifically methylates the cap through recognition of the 5' terminus of viral RNA. Distinct RNA elements are required for the methylations at guanine N-7 on the cap and ribose 2'-OH on the first transcribed nucleotide. In a West Nile virus (WNV) model, N-7 cap methylation requires specific nucleotides at the second and third positions and a 5' stem-loop structure; in contrast, 2'-OH ribose methylation requires specific nucleotides at the first and second positions, with a minimum 5' viral RNA of 20 nucleotides. The cap analogues GpppA and m(7)GpppA are not active substrates for WNV methytransferase. Footprinting experiments using Gppp- and m(7)Gppp-terminated RNAs suggest that the 5' termini of RNA substrates interact with NS5 during the sequential methylation reactions. Cap methylations could be inhibited by an antisense oligomer targeting the first 20 nucleotides of WNV genome. The viral RNA-specific cap methylation suggests methyltransferase as a novel target for flavivirus drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号