首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies have suggested that P elements have rapidly spread through natural populations of Drosophila melanogaster within the last four decades. This observation, together with the observation that P elements are absent in the other species of the melanogaster subgroup, has lead to the suggestion that P elements may have entered the D. melanogaster genome by horizontal transmission from some more distantly related species. In an effort to identify the potential donor in the horizontal transfer event, we have undertaken an extensive survey of the genus Drosophila using Southern blot analysis. The results showed that P-homologous sequences are essentially confined to the subgenus Sophophora. The strongest P hybridization occurs in species from the closely related willistoni group. A wild-derived strain of D. willistoni was subsequently selected for a more comprehensive molecular examination. As part of the analysis, a complete P element was cloned and sequenced from this line. Its nucleotide sequence was found to be identical to the D. melanogaster canonical P, with the exception of a single base substitution at position 32. When the cloned element was injected into D. melanogaster embryos, it was able to both promote transposition of a coinjected marked transposon and induce singed-weak mutability, thus demonstrating its ability to function as an autonomous element. The results of this study suggest that D. willistoni may have served as the donor species in the horizontal transfer of P elements to D. melanogaster.  相似文献   

2.
The phylogenetic distribution of transposable families, P, gypsy, hobo, I, and mariner has been analyzed in 33 species of 11 groups of neotropical Drosophila and a Drosophilidae species Zygotrica vittimaculosa, using squash blot and dot blot. Genomic DNA of almost all neotropical species tested hybridized with gypsy probe and some species showed a particularly strong hybridization signal, as D. gaucha, D. virilis, and species of flavopilosa group. The hobo element was restricted to melanogaster group and some strains of D. willistoni. Only D. simulans DNA showed hybridization to mariner probe in all species tested and D. simulans and D. melanogaster showed hybridization with I element probe. P element homologous sequence was present in D. melanogaster and all species and strains of the willistoni and saltans groups tested. The presence of at least one P-homologous sequence was detected in Drosophila mediopunctata. This one was the only P-bearing species of all six tested from the tripunctata group. Four different pairs of primers homologous to segments of the canonical sequence of D. melanogaster's P were used to amplify specific sequences from D. mediopunctata DNA, showing the occurrence of seemingly well-conserved P-homologous sequences. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Carracedo MC  Suarez C  Casares P 《Genetica》2000,108(2):155-162
The sexual isolation among the related species Drosophila melanogaster, D. simulans and D. mauritiana is asymmetrical. While D. mauritiana males mate well with both D. melanogaster and D. simulans females, females of D. mauritiana discriminate strongly against males of these two species. Similarly, D. simulans males mate with D. melanogaster females but the reciprocal cross is difficult. Interspecific crosses between several populations of the three species were performed to determine if (i) males and females of the same species share a common sexual isolation genetic system, and (ii) males (or females) use the same genetic system to discriminate against females (or males) of the other two species. Results indicate that although differences in male and female isolation depend on the populations tested, the isolation behaviour between a pair of species is highly correlated despite the variations. However, the rank order of the isolation level along the populations was not correlated in both sexes, which suggests that different genes act in male and female sexual isolation. Neither for males nor for females, the isolation behaviour of one species was paralleled in the other two species, which indicates that the genetic systems involved in this trait are species-pair specific. The implications of these results are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
A phylogenetic survey using the polymerase chain reaction (PCR) has identified four major P element subfamilies in the saltans and willistoni species groups of Drosophila. One subfamily, containing about half of the sequences studied, consists of elements that are very similar to the canonical (and active) P element from D. melanogaster. Within this subfamily, nucleotide sequence differentiation among different copies from the same species and among elements from different species is relatively low. This observation suggests that the canonical elements are relatively recent additions to the genome or, less likely, are evolving slowly relative to the other subfamilies. Elements belonging to the three noncanonical lineages are distinct from the canonical elements and from one another. Furthermore, there is considerably more sequence variation, on the average, within the noncanonical subfamilies compared to the canonical elements. Horizontal transfer and the coexistence of multiple, independently evolving element subfamilies in the same genome may explain the distribution of P elements in the saltans and willistoni species groups. Such explanations are not mutually exclusive, and each may be involved to varying degrees in the maintenance of P elements in natural populations of Drosophila.   相似文献   

5.
Evolution of single-copy DNA and the ADH gene in seven drosophilids   总被引:8,自引:0,他引:8  
Summary Single-copy DNA was isolated fromDrosophila melanogaster and hybridized with total genomic DNA ofD. melanogaster, D. mauritiana, D. simulans, D. pseudoobscura, D. willistoni, D. hydei andD. virilis. The duplexes were thermally eluted from hydroxyapatite and the data used to assess the relatedness of each species toD. melanogaster. The general pattern of relatedness was similar to that predicted by morphological methods but with some notable exceptions. The rate of nucleotide substitution was estimated to be greater than 0.66% of bases per million years. An unexpected, rapidly evolving component ofD. melanogaster single-copy DNA was identified. The relatedness of these species was also studied with respect to the gene coding for alcohol dehydrogenase (ADH). The ADH gene, previously cloned fromD. melanogaster (Goldberg 1980), was hybridized with Southern blots of genomic digests of the seven species. The intensity and position of the hybridizing bands suggest the amount of divergence of the gene. Divergence was quantitated by reassociation of a fragment of the cloned ADH gene with total DNA of the seven drosophilids and thermal elution of the resultant duplexes from hydroxyapatite. The ADH gene was isolated from genomic clone libraries ofD. melanogaster, D. simulans andD. mauritiana and further studied by comparison of position of restriction sites. Species relationships deduced from comparison of total single-copy DNA and the ADH gene were consistent, demonstrating that a single gene can reflect divergence of the entire genome.  相似文献   

6.
We report here the DNA sequence of the alcohol dehydrogenase gene (Adh) cloned from Drosophila willistoni. The three major findings are as follows: (1) Relative to all other Adh genes known from Drosophila, D. willistoni Adh has the last intron precisely deleted; PCR directly from total genomic DNA indicates that the deletion exists in all members of the willistoni group but not in any other group, including the closely related saltans group. Otherwise the structure and predicted protein are very similar to those of other species. (2) There is a significant shift in codon usage, especially compared with that in D. melanogaster Adh. The most striking shift is from C to U in the wobble position (both third and first position). Unlike the codon-usage-bias pattern typical of highly biased genes in D. melanogaster, including Adh, D. willistoni has nearly 50% G + C in the third position. (3) The phylogenetic information provided by this new sequence is in agreement with almost all other molecular and morphological data, in placing the obscura group closer to the melanogaster group, with the willistoni group farther distant but still clearly within the subgenus Sophophora.   相似文献   

7.
Experimental data suggest that the P transposable element has invaded the Drosophila melanogaster genome after a horizontal transfer from the phylogenetically distant species Drosophila willistoni. The differences between P element phylogeny and that of the Drosophila genus could in part be explained by horizontal transfers. In vivo experiments show that P elements are able to transpose in the genomes of other Drosophila species. This suggests that horizontal transmission of P elements could have taken place in many species of this genus. The regulation, transposition, and deleterious effects of the P element in D. melanogaster were formalized and integrated in a global model to produce a simulation program that simulates a P element invasion. The simulations show that our knowledge of the P element in D. melanogaster can explain its behavior in the Drosophila genus. The equilibrium state of the invaded population of a new species depends on its ability to repair damage caused by P element activity. If repair is efficient, the equilibrium state tends to be of the P type state, in which case the element could subsequently invade other populations of the species. Conversely, the equilibrium state is of the M′ type state when the ability to repair damage is low. The invasion of the P element into other populations of this new species can then only occur by genetic drift and it is likely to be lost. The success of a P element invasion into a new species thus greatly depends on its ability to produce dysgenic crosses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The postcopulatory behavior of Drosophila biarmipes and Drosophila melanogaster females was analyzed and compared. Females from both species were shown to undergo a series of behavioral changes following mating, including significant reductions in both sexual attractiveness and receptivity. However, while both attractiveness and receptivity returned to “virgin-like” levels within a few days in D. melanogaster, D. biarmipes females, which regained their sexual attractiveness within a few days, remained unreceptive to copulation for at least 2 weeks. With respect to fecundity, D. melanogaster females produced more offspring when given opportunities to remate, while D. biarmipes females did not benefit from remating opportunities. These observations suggest that D. biarmipes females may have the ability to store sperm and produce offspring from a single mating over longer periods of time than other drosophilids.  相似文献   

9.
Rate of recombination is a powerful variable affecting several aspects of molecular variation and evolution. A nonrecombining portion of the genome of most Drosophila species, the "dot" chromosome or F element, exhibits very low levels of variation and unusual codon usage. One lineage of Drosophila, the willistoni/saltans groups, has the F element fused to a normally recombining E element. Here, we present polymorphism data for genes on the F element in two Drosophila willistoni and one D. insularis populations, genes previously studied in D. melanogaster. The D. willistoni populations were known to be very low in inversion polymorphism, thus minimizing the recombination suppression effect of inversions. We first confirmed, by in situ hybridization, that D. insularis has the same E + F fusion as D. willistoni, implying this was a monophyletic event. A clear gradient in codon usage exists along the willistoni F element, from the centromere distally to the fusion with E; estimates of recombination rates parallel this gradient and also indicate D. insularis has greater recombination than D. willistoni. In contrast to D. melanogaster, genes on the F element exhibit moderate levels of nucleotide polymorphism not distinguishable from two genes elsewhere in the genome. Although some linkage disequilibrium (LD) was detected between polymorphic sites within genes (generally <500 bp apart), no long-range LD between F element loci exists in the two willistoni group species. In general, the distribution of allele frequencies of F element genes display the typical pattern of expectations of neutral variation at equilibrium. These results are consistent with the hypothesis that recombination allows the accumulation of nucleotide variation as well as allows selection to act on synonymous codon usage. It is estimated that the fusion occurred ~20 Mya and while the F element in the willistoni lineage has evolved "normal" levels and patterns of nucleotide variation, equilibrium may not have been reached for codon usage.  相似文献   

10.
Abstract. The courtship song emitted by male wing vibration has been regarded as one of the most important signals in sexual isolation in the species of the Drosophila melanogaster complex. Inter- and intraspecific crosses were observed using males whose wings were removed (mute) or females whose aristae were removed (deaf). Females of D. melanogaster, D. simulans , and D. mauritiana mated with heterospecific males in the song-present condition (cross between normal females and winged males) more often than in the no-song condition (cross between normal females and wingless males or between aristaless females and winged males) or they showed no preference between the two conditions. It is possible that in these females heterospecific courtship songs play a role as if they were conspecific. In contrast, the females of D. sechellia mated with D. melanogaster or D. simulans males in the no-song condition more often than in the song-present condition, suggesting that they reject males with heterospecific song. Female mate recognition depending on the courtship song in D. melanogaster, D. simulans , and D. mauritiana is considered to be relatively broader and that in D. sechellia narrower.  相似文献   

11.
Distribution and conservation of mobile elements in the genus Drosophila   总被引:13,自引:1,他引:12  
Essentially nothing is known of the origin, mode of transmission, and evolution of mobile elements within the genus Drosophila. To better understand the evolutionary history of these mobile elements, we examined the distribution and conservation of homologues to the P, I, gypsy, copia, and F elements in 34 Drosophila species from three subgenera. Probes specific for each element were prepared from D. melanogaster and hybridized to genomic DNA. Filters were washed under conditions of increasing stringency to estimate the similarity between D. melanogaster sequences and their homologues in other species. The I element homologues show the most limited distribution of all elements tested, being restricted to the melanogaster species group. The P elements are found in many members of the subgenus Sophophora but, with the notable exception of D. nasuta, are not found in the other two subgenera. Copia-, gypsy-, and F-element homologues are widespread in the genus, but their similarity to the D. melanogaster probe differs markedly between species. The distribution of copia and P elements and the conservation of the gypsy and P elements is inconsistent with a model that postulates a single ancient origin for each type of element followed by mating-dependent transmission. The data can be explained by horizontal transmission of mobile elements between reproductively isolated species.   相似文献   

12.
The courtship song of Drosophila is useful for species recognition and sexual selection. A new species of the melanogaster group of Drosophila , D. santomea , has recently been described from the island of São Tomé in the Gulf of Guinea. We describe the courtship song of D. santomea and compare it with that of its sibling species D. yakuba . Both species have a relatively unusual song pattern for melanogaster-group species, in that they have two types of pulse song but no sine song. There are large differences in the inter-pulse interval of both types of song, but no major differences in pulse shape or intrapulse frequency between the species. The song of D. yakuba is similar in lines from the African mainland (allopatric to D. santomea ) and from São Tomé (sympatric). We test if song pattern might influence sexual isolation by examining the mating success of wingless males with homo- and hetero-specific females. We show that song pattern contributes to sexual stimulation, but the differences in song patterns alone are unlikely to explain patterns of sexual isolation such as the asymmetrical isolation seen between species.  相似文献   

13.
By analyzing the mating activity of newly isolated yellow and sepia mutants of Drosophila willistoni no difference in behavior between sepia and wild-type flies were observed, whereas yellow males were less successful than wild-type males when competing for females. These results are in agreement with those reported for other Drosophila species. D. willistoni was different in the 'females-competing' crosses because wild-type males mated more frequently with wild-type females whereas yellow males mated successfully with both phenotypes. These results indicate the complexity of the courtship behavior in D. willistoni and provide data for comparative and evolutionary research into the genus.  相似文献   

14.
15.
Carracedo MC  Asenjo A  Casares P 《Heredity》2003,91(3):202-207
The genetic bases of sexual isolation between Drosophila melanogaster and D. simulans have been mainly studied in females, and there is little information about the role of the males in interspecific mating discrimination. Using D. simulans synthetic lines with compound chromosomes from a population of the Seychelles Islands (high frequency of interspecific mating) and a multimarker strain (low frequency), we show that D. simulans males play an important role in discriminating D. melanogaster females. The genetics of male discrimination fits well with the inheritance mode of a single locus, dominant for sexual isolation, located in chromosome II near the net mutation (2L-0.0). The heterospecific mating success of the male was not related to his sexual vigor. The specific load of male cuticular hydrocarbons was counted as a possible source of discrimination used by the D. melanogaster female.  相似文献   

16.
Females of Drosophila melanogaster and males of D. simulans hybridizing in a nonchoice condition were artificially selected for 12 generations. The frequency of hybridization increased from 10% to 79%. Response to selection occurred in both species, particularly in D. melanogaster. Female receptivity was the primary sexual trait that accounted for breaking up sexual isolation in these species, but it remained unclear which elements of the D. simulans male courtship were involved.  相似文献   

17.
Wolbachia are maternally transmitted endocellular bacteria causing a reproductive incompatibility called cytoplasmic incompatibility (CI) in several arthropod species, including Drosophila. CI results in embryonic mortality in incompatible crosses. The only bacterial strain known to infect Drosophila melanogaster (wDm) was transferred from a D. melanogaster isofemale line into uninfected D. simulans isofemale lines by embryo microinjections. Males from the resulting transinfected lines induce >98% embryonic mortality when crossed with uninfected D. simulans females. In contrast, males from the donor D. melanogaster line induce only 18-32% CI on average when crossed with uninfected D. melanogaster females. Transinfected D. simulans lines do not differ from the D. melanogaster donor line in the Wolbachia load found in the embryo or in the total bacterial load of young males. However, >80% of cysts are infected by Wolbachia in the testes of young transinfected males, whereas only 8% of cysts are infected in young males from the D. melanogaster donor isofemale line. This difference might be caused by physiological differences between hosts, but it might also involve tissue-specific control of Wolbachia density by D. melanogaster. The wDm-transinfected D. simulans lines are unidirectionally incompatible with strains infected by the non-CI expressor Wolbachia strains wKi, wMau, or wAu, and they are bidirectionally incompatible with strains infected by the CI-expressor Wolbachia strains wHa or wNo. However, wDm-infected males do not induce CI toward females infected by the CI-expressor strain wRi, which is found in D. simulans continental populations, while wRi-infected males induce partial CI toward wDm-infected females. This peculiar asymmetrical pattern could reflect an ongoing divergence between the CI mechanisms of wRi and wDm. It would also confirm other results indicating that the factor responsible for CI induction in males is distinct from the factor responsible for CI rescue in females.  相似文献   

18.
Moulin B  Aubin T  Jallon JM 《Genetica》2004,120(1-3):285-292
In the Drosophila melanogaster complex, females D. melanogaster mate relatively easily with males Drosophila simulans but the reciprocal cross is rare. The species sexual isolation is mainly based on chemical and acoustic signal exchanges between partners. The male side of this communication is investigated in this paper in order to understand the asymmetry. In D. melanogaster the acoustic signature is highly significant, and is synergistically reinforced by the chemical signal. In D. simulans the importance of the two signaling channels seems to be reversed. This could explain why D. simulans males produce less precise interpulse interval (IPI) mean value in the courtship song, which can readily overlap those of D. melanogaster. As the males of the two species use the same chemical key, D. simulans males could be recognized by D. melanogaster females as a conspecific.  相似文献   

19.
The genetic analysis of sexual isolation between the closely-related species Drosophila melanogaster and Drosophila simulans involved two experiments with no-choice tests. The efficiency of sexual isolation was measured by the frequency of courtship initiation and interspecific mating. We first surveyed the variation in sexual isolation between D. melanogaster strains and D. simulans strains of different geographic origin. Then, to investigate variation in sexual isolation within strains, we made F1 diallel sets of reciprocal crosses within strains of D. melanogaster and D. simulans. The F1 diallel progeny of one sex were paired with the opposite sex of the other species. The first experiment showed significant differences in the frequency of interspecific mating between geographic strains. There were more matings between D. simulans females and D. melanogaster males than between D. melanogaster females and D. simulans males. The second experiment uncovered that the male genotypes in the D. melanogaster diallel significantly differed in interspecific mating frequency, but not in courtship initiation frequency. The female genotypes in the D. simulans diallel were not significantly different in courtship initiation and interspecific mating frequency. Genetic analysis reveals that in D. melanogaster males sexual isolation was not affected by either maternal cytoplasmic effects, sex-linked effects, or epistatic interaction. The main genetic components were directional dominance and overdominance. The F1 males achieved more matings with D. simulans females than the inbred males. The genetic architecture of sexual isolation in D. melanogaster males argues for a history of weak or no selection for lower interspecific mating propensity. The behavioral causes of variation in sexual isolation between the two species are discussed.  相似文献   

20.
Hybrid females from Drosophila simulans females X Drosophila melanogaster males die as embryos while hybrid males from the reciprocal cross die as larvae. We have recovered a mutation in melanogaster that rescues the former hybrid females. It was located on the X chromosome at a position close to the centromere, and it was a zygotically acting gene, in contrast with mhr (maternal hybrid rescue) in simulans that rescues the same hybrids maternally. We named it Zhr (Zygotic hybrid rescue). The gene also rescues hybrid females from embryonic lethals in crosses of Drosophila mauritiana females X D. melanogaster males and of Drosophila sechellia females X D. melanogaster males. Independence of the hybrid embryonic lethality and the hybrid larval lethality suggested in a companion study was confirmed by employing two rescue genes, Zhr and Hmr (Hybrid male rescue), in doubly lethal hybrids. A model is proposed to explain the genetic mechanisms of hybrid lethalities as well as the evolutionary pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号