首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S R Yan  M J Novak 《FEBS letters》1999,451(1):33-38
Tumor necrosis factor alpha and fMLP can activate a broad range of cellular functions in neutrophils adherent to biological surfaces. These functions are mediated by integrins and involve the activation of tyrosine kinases. Here, we report that Pyk2, a member of the focal adhesion kinase family, was present in human neutrophils and was rapidly phosphorylated and activated following tumor necrosis factor alpha and fMLP stimulation in an adhesion-dependent manner. Tyrosine phosphorylation of Pyk2 was attenuated by beta2 integrin blocking with specific antibodies. The tyrosine phosphorylation of Pyk2 was downstream of protein kinases Lyn, Syk and protein kinase C and cytoskeletal organization. The activation of Pyk2 may play a role in adhesion/cytoskeleton-associated neutrophils function.  相似文献   

2.
Atherosclerotic plaque forms in regions of the vasculature exposed to disturbed flow. NF-kappaB activation by fluid flow, leading to expression of target genes such as E-selectin, ICAM-1, and VCAM-1, may regulate early monocyte recruitment and fatty streak formation. Flow-induced NF-kappaB activation is downstream of conformational activation of integrins, resulting in new integrin binding to the subendothelial extracellular matrix and signaling. Therefore, we examined the involvement of the extracellular matrix in this process. Whereas endothelial cells plated on fibronectin or fibrinogen activate NF-kappaB in response to flow, cells on collagen or laminin do not. In vivo, fibronectin and fibrinogen are deposited at atherosclerosis-prone sites before other signs of atherosclerosis. Ligation of integrin alpha2beta1 on collagen prevents flow-induced NF-kappaB activation through a p38-dependent pathway that is activated locally at adhesion sites. Furthermore, altering the extracellular matrix to promote p38 activation in cells on fibronectin suppresses NF-kappaB activation, suggesting a novel therapeutic strategy for treating atherosclerosis.  相似文献   

3.
Neutrophil migration from the blood to inflammatory sites follows a cascade of events, in which adhesion to endothelial cells and extracellular matrix proteins is essential. S100A8, S100A9, and S100A12 are small abundant proteins found in human neutrophil cytosol and presumed to be involved in leukocyte migration. Here we investigated the S100 proteins' activities in neutrophil tissue migration by evaluating their effects on neutrophil adhesion to certain extracellular matrix proteins. S100A9 induced adhesion only to fibronectin and was the only S100 protein that stimulated neutrophil adhesion to this extracellular matrix protein. Experiments with blocking antibodies revealed that neither beta1 nor beta3 integrins were strongly involved in neutrophil adhesion to fibronectin, contrary to what the literature predicted. In contrast, neutrophil adhesion to fibronectin was completely inhibited by anti-beta2 integrins, suggesting that S100A9-induced specific activation of beta2 integrin is essential to neutrophil adhesion.  相似文献   

4.
Adhesion of neutrophils to substrate is initiated by receptor-ligand interactions that induce outside-in signaling. Inside-out signals and lateral interactions between surface molecules further fine tune the response. This study investigates the role of CD66 in adhesion of neutrophils to fibronectin, using domain-mapped monoclonal antibodies to CD66. Neutrophils express CD66a, CD66b, and CD66c on their surface. The neutrophil surface molecules that bind to fibronectin are the alpha(4)beta(1) and alpha(5)beta(1) integrins. Our results show that the monoclonal antibody Kat4c, which recognizes the AB domain of CD66a, b, and c and the polyclonal anti-CD66 (anti-carcinoembryonic antigen), augments neutrophil adhesion to fibronectin, while monoclonal antibodies to the individual CD66 antigens, the Fab fragment of Kat4c, and a mixture of the individual antibodies to CD66 antigens were unable to affect the adhesion. Thus heterodimerization of CD66a, b, and c is required for promoting neutrophil adhesion to fibronectin. The increased adhesion in presence of Kat4c was inhibited by antibodies to the beta(1) and beta(2) integrins. Antibody ligation of CD66 antigens causes their clustering and concomitant coclustering of the alpha(M) subunit of the beta(2) integrin, thereby activating the integrin. The sugar alpha-methyl mannoside inhibited anti-CD66-mediated clustering, indicating that a carbohydrate-lectin interaction may exist between CD66 and alpha(M) integrin. It also reduced the increased adhesion of neutrophils to fibronectin, suggesting that beta(2) integrin activation precedes beta(1) integrin activation. Further, the anti-CD66-mediated adhesion to fibronectin is accompanied by increased localization of Src family kinases (lyn and hck) to the cytoskeleton and an increase in their kinase activity. These results suggest that crosslinking of CD66a, CD66b, and CD66c promotes activation of the beta(2) integrin and in turn an alteration in the affinity of the beta(1) integrin, which enhances the adhesion of neutrophils to fibronectin.  相似文献   

5.
Growing evidence supports the idea that adhesion via beta(2) integrins not only allows cellular targeting, but also induces intracellular signaling, which in turn activates functional responses of adherent cells. This study investigates whether beta(2) integrin-mediated adhesion of human polymorphonuclear neutrophils (PMN) has a functional impact on cytokine production. Aggregation of the beta(2) integrin Mac-1 (CD11b/CD18) by antibody cross-linking was found to induce substantial de novo synthesis of IL-8 mRNA as measured by semiquantitative RT-PCR and Northern blotting technique, respectively. Induction of IL-8 mRNA was also observed upon adhesion of PMN to immobilized fibrinogen, a functional equivalent of its clotting product fibrin that serves as a native ligand of Mac-1. Results were confirmed using PMN derived from CD18-deficient mice, which were unable to produce MIP-2 mRNA, a homologue of human IL-8, in the presence of immobilized fibrinogen. In contrast, a substantial increase of MIP-2 mRNA was observed when wild-type PMN were incubated on immobilized fibrinogen. In human PMN, ELISA technique showed that the gene activation that required tyrosine kinase activity resulted in a substantial production and secretion of biologically active IL-8 and IL-1beta. In contrast, no TNF-alpha or IL-6 production was found, revealing that beta(2) integrins mediate differential expression of proinflammatory cytokines. The biological relevance of the present findings was confirmed in an in vivo model of acute inflammation. Altogether, the present findings provide evidence for a functional link between clotting and inflammatory responses that may contribute to the recruitment and/or activation of PMN and other cells at sites of lesion.  相似文献   

6.
In human neutrophils, IL-8 induces chemotaxis, the respiratory burst, and granule release, and enhances cellular adhesion, a beta(2) integrin-dependent event. IL-8 stimulates neutrophil adhesion to purified fibrinogen in a Mac-1-dependent manner. Mitogen-activated protein kinase (MAPK) activation was detected in human neutrophil lysates after treatment with IL-8 and PMA, but not the activating mAb CBR LFA 1/2. IL-8-stimulated neutrophil adhesion to fibrinogen was blocked 50% by the MAPK/extracellular signal-related kinase-activating enzyme inhibitor PD098059. Adhesion was blocked approximately 75% by inhibition of the phosphatidylinositol-3 kinase (PI3K) pathway with LY294002, supporting that activation of both MAPK and PI3K may play a role in IL-8-dependent inside-out signals that activate Mac-1. Activation of MAPK was inhibited in IL-8-stimulated cells in the presence of PI3K inhibitors LY294002 or wortmannin, supporting a model in which PI3K is upstream of MAPK. IL-8-stimulated neutrophil adhesion was inhibited 50% by bisindolylmaleimide-I, implicating protein kinase C (PKC) in the intracellular signaling from the IL-8R to Mac-1. A 74-kDa molecular mass species was detected by an activation-specific Ab to PKC when cells were stimulated with PMA or IL-8, but not a beta(2)-activating Ab. Inhibition of either MAPK or PKC resulted in partial inhibition of IL-8-stimulated polymorphonuclear neutrophil adhesion, and treatment with both inhibitors simultaneously completely abolished IL-8-stimulated adhesion to ligand. Inhibition of PI3K blocked MAPK activation, but not PKC activation, suggesting a branch point that precedes PI3K activation. These data suggest that both MAPK and PKC are activated in response to IL-8 stimulation, and that these may represent independent pathways for beta(2) integrin activation in neutrophils.  相似文献   

7.
Neutrophil beta(2) integrins are activated by inside-out signaling regulating integrin affinity and valency; following ligand binding, beta(2) integrins trigger outside-in signals regulating cell functions. Addressing inside-out and outside-in signaling in hck(-/-)fgr(-/-) neutrophils, we found that Hck and Fgr do not regulate chemoattractant-induced activation of beta(2) integrin affinity. In fact, beta(2) integrin-mediated rapid adhesion, in static condition assays, and neutrophil adhesion to glass capillary tubes cocoated with ICAM-1, P-selectin, and a chemoattractant, under flow, were unaffected in hck(-/-)fgr(-/-) neutrophils. Additionally, examination of integrin affinity by soluble ICAM-1 binding assays and of beta(2) integrin clustering on the cell surface, showed that integrin activation did not require Hck and Fgr expression. However, after binding, hck(-/-)fgr(-/-) neutrophil spreading over beta(2) integrin ligands was reduced and they rapidly detached from the adhesive surface. Whether alterations in outside-in signaling affect sustained adhesion to the vascular endothelium in vivo was addressed by examining neutrophil adhesiveness to inflamed muscle venules. Intravital microscopy analysis allowed us to conclude that Hck and Fgr regulate neither the number of rolling cells nor rolling velocity in neutrophils. However, arrest of hck(-/-)fgr(-/-) neutrophils to >60 microm in diameter venules was reduced. Thus, Hck and Fgr play no role in chemoattractant-induced inside-out beta(2) integrin activation but regulate outside-in signaling-dependent sustained adhesion.  相似文献   

8.
On inflamed endothelium selectins support neutrophil capture and rolling that leads to firm adhesion through the activation and binding of beta 2 integrin. The primary mechanism of cell activation involves ligation of chemotactic agonists presented on the endothelium. We have pursued a second mechanism involving signal transduction through binding of selectins while neutrophils tether in shear flow. We assessed whether neutrophil rolling on E-selectin led to cell activation and arrest via beta 2integrins. Neutrophils were introduced into a parallel plate flow chamber having as a substrate an L cell monolayer coexpressing E-selectin and ICAM-1 (E/I). At shears >/=0.1 dyne/cm2, neutrophils rolled on the E/I. A step increase to 4.0 dynes/cm2 revealed that approximately 60% of the interacting cells remained firmly adherent, as compared with approximately 10% on L cells expressing E-selectin or ICAM-1 alone. Cell arrest was dependent on application of shear and activation of Mac-1 and LFA-1 to bind ICAM-1. Firm adhesion was inhibited by blocking E-selectin, L-selectin, or PSGL-1 with Abs and by inhibitors to the mitogen-activated protein kinases. A chimeric soluble E-selectin-IgG molecule specifically bound sialylated ligands on neutrophils and activated adhesion that was also inhibited by blocking the mitogen-activated protein kinases. We conclude that neutrophils rolling on E-selectin undergo signal transduction leading to activation of cell arrest through beta 2 integrins binding to ICAM-1.  相似文献   

9.
Das M  Ithychanda SS  Qin J  Plow EF 《PloS one》2011,6(10):e26355
Cell adhesion and migration depend on engagement of extracellular matrix ligands by integrins. Integrin activation is dynamically regulated by interactions of various cytoplasmic proteins, such as filamin and integrin activators, talin and kindlin, with the cytoplasmic tail of the integrin β subunit. Although filamin has been suggested to be an inhibitor of integrin activation, direct functional evidence for the inhibitory role of filamin is limited. Migfilin, a filamin-binding protein enriched at cell-cell and cell-extracellular matrix contact sites, can displace filamin from β1 and β3 integrins and promote integrin activation. However, its role in activation and functions of different β integrins in human vascular cells is unknown. In this study, using flow cytometry, we demonstrate that filamin inhibits β1 and αIIbβ3 integrin activation, and migfilin can overcome its inhibitory effect. Migfilin protein is widely expressed in different adherent and circulating blood cells and can regulate integrin activation in naturally-occurring vascular cells, endothelial cells and neutrophils. Migfilin can activate β1, β2 and β3 integrins and promote integrin mediated responses while migfilin depletion impairs the spreading and migration of endothelial cells. Thus, filamin can act broadly as an inhibitor and migfilin is a promoter of integrin activation.  相似文献   

10.
The CD69 glycoprotein is an early activation antigen of T and B lymphocytes but it expression is induced in vitro on cells of most hematopoietic lineages, including neutrophils after stimulation with PMA or fMLP. In this study, we investigated whether CD69 expression on human neutrophils could be modulated by inflammatory or anti-inflammatory cytokines (IL-1beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, G-CSF, GM-CSF, TNF-alpha, TGF-beta, IFN-alpha, IFN-gamma). Resting neutrophils from healthy subjects did not express CD69 on the cell surface; moreover, a preformed intracellular pool of CD69 was not evident in these cells. CD69 was barely detectable on these cells after overnight incubation in medium while overnight incubation with GM-CSF, IFN-gamma or IFN-alpha significantly induced CD69 expression on neutrophils with GM-CSF appearing to be the most potent inducer. This induction was dependent on a new protein synthesis as it was significantly inhibited by cycloheximide (about 50% inhibition). CD69 cross-linking on GM-CSF-primed neutrophils sinergized with LPS and increased TNF-alpha production and secretion suggesting a role for CD69-positive neutrophils in the pathogenesis and maintenance of different inflammatory diseases.  相似文献   

11.
Beta(1) integrins play a crucial role in supporting tumor cell attachment to and invasion into the extracellular matrix. Endotoxin/LPS introduced by surgery has been shown to enhance tumor metastasis in a murine model. Here we show the direct effect of LPS on tumor cell adhesion and invasion in extracellular matrix proteins through a beta(1) integrin-dependent pathway. The human colorectal tumor cell lines SW480 and SW620 constitutively expressed high levels of the beta(1) subunit, whereas various low levels of alpha(1), alpha(2), alpha(4), and alpha(6) expression were detected. SW480 and SW620 did not express membrane-bound CD14; however, LPS in the presence of soluble CD14 (sCD14) significantly up-regulated beta(1) integrin expression; enhanced tumor cell attachment to fibronectin, collagen I, and laminin; and strongly promoted tumor cell invasion through the Matrigel. Anti-beta(1) blocking mAbs (4B4 and 6S6) abrogated LPS- plus sCD14-induced tumor cell adhesion and invasion. Furthermore, LPS, when combined with sCD14, resulted in NF-kappaB activation in both SW480 and SW620 cells. Inhibition of the NF-kappaB pathway significantly attenuated LPS-induced up-regulation of beta(1) integrin expression and prevented tumor cell adhesion and invasion. These results provide direct evidence that although SW480 and SW620 cells do not express membrane-bound CD14, LPS in the presence of sCD14 can activate NF-kappaB, up-regulate beta(1) integrin expression, and subsequently promote tumor cell adhesion and invasion. Moreover, LPS-induced tumor cell attachment to and invasion through extracellular matrix proteins is beta(1) subunit-dependent.  相似文献   

12.
Neutrophils (PMN) are short-lived cells but their survival is often prolonged in inflammation. The beta2 (CD11/CD18) integrins are involved in PMN migration into inflammation but their role in PMN survival is not well understood. We investigated the role of beta2 integrins in PMN caspase activation, a key enzyme cascade in apoptosis. After 20 h, caspase activation (Western blotting) was markedly decreased in PMN cultured on fibrinogen, a ligand for Mac-1 (CD11b/CD18), but not on fibronectin or albumin. In the presence of TNF-alpha or endotoxin (LPS), blockade of CD18 (beta2 chain) with mAb markedly increased caspase activation in PMN on fibrinogen. PMN which migrated through endothelium in vitro in response to TNF-alpha, LPS, IL-1alpha, IL-8 or C5a contained 58% fewer active caspase positive PMN after 20 h than non-migrated PMN remaining on the endothelium. When beta2 (CD18) integrin or lymphocyte function antigen (LFA)-1 (CD11a) plus Mac1 (CD11b) were blocked by mAb (intact or Fab'), the proportion of migrated PMN (but not of non-migrated PMN) with active caspases was significantly increased (2-4-fold) and this was associated with accelerated PMN apoptosis and death. Thus, engagement of ligands on extracellular matrix and endothelium by the beta2 integrins Mac-1 and LFA-1 plays a role in delaying apoptosis in PMN recruited in response to LPS and TNF-alpha. Inhibition of beta2 integrin function may not only inhibit PMN infiltration, but also accelerate PMN clearance from inflamed tissue.  相似文献   

13.
The level of expression of neutrophil adhesion molecules may be a useful marker for neutrophil activation in clinical studies. We therefore determined neutrophil integrin expression under various experimental conditions using a Fluorescence Activated Cell Sorter (FACS) after the cells had been labelled with fluorescent conjugated antibodies to the integrin subunits CD11a, CD11b and CD18. Levels of labelled CD11b and CD18 increased after activation with the chemotactic peptide formyl-methionyl-leucyl phenylalanine (fMLP) in a dose- and time-dependent manner, but CD11a did not, indicating that CD11a would not be a useful marker of neutrophil activation. The baseline expression of CD11b and CD18 on unstimulated neutrophils was similar in heparin and EDTA anti-coagulated blood but the response to activation with fMLP was significantly less for the EDTA anti-coagulated samples (p < 0·01 in paired t-test). The labelling of integrins was significantly higher in unfixed whole blood samples compared to samples fixed with 1 per cent paraformaldehyde. However, the increase in labelling induced by fMLP was similar whether or not the samples were fixed after activation. Labelling of CD11b and CD18 was greater for preparations of isolated neutrophils than for neutrophils in whole blood, and the response to fMLP stimulation tended to be lower for the isolated cells. Our results indicate that heparin should be used as anti-coagulant in clinical studies utilizing whole blood if subsequent activation of neutrophils is planned (e.g. to detect in vivo priming), although EDTA may be used if baseline expression alone is to be measured. Fixation of blood samples should not affect the ability to detect neutrophil activation.  相似文献   

14.
When the hematopoietic growth factor granulocyte-macrophage colony-stimulating factor was incubated with neutrophils adherent to plastic tissue culture plates or plates coated with extracellular matrix proteins, a rapid (3 min) but transient formation of phosphatidic acid was observed. This stimulation was dependent on the dose of GM-CSF, with an EC50 of 140 pM, and was further enhanced (up to 350%) with the PA phosphatase inhibitor propranolol in a dose-dependent manner. Conversely, GM-CSF was unable to trigger any PA formation in neutrophils maintained in suspension, even in the presence of soluble fibronectin. However, GM-CSF did prime the cells for enhanced PA formation in the presence of a secondary stimulus (fMet-Leu-Phe or PAF). GM-CSF also caused a time-dependent stimulation of diacylglycerol formation in adherent, but not suspended, cells and elicited a time-dependent stimulation of phosphatidylethanol formation, with a concomitant decrease in the formation of PA only at early (< 7 min) times. These observations were consistent with a rapid activation of the enzyme phospholipase D in adherent cells stimulated with GM-CSF. Additional data indicated that the source of DAG was PLD coexisting with PLC, especially at later times ( > 7 min) of stimulation with GM-CSF. Finally, the formation of PA and PEt, and to a minor extent, DAG, were inhibited by the protein tyrosine kinase inhibitor erbstatin in conditions in which tyrosine phosphorylation occurred. Taken together the data indicate that GM-CSF rapidly activates PLD in adherent cells, which is responsible for the generation of PA. Thus, PLD activation is an early event in neutrophil signal transduction following exposure of adherent cells to GM-CSF.  相似文献   

15.
The expression of alpha 5 beta 1 integrin on the surface of fibroblasts requires adhesion to substratum. We have examined the basis for this adhesion-dependent surface expression by comparing the life cycle of integrins in parallel cultures of adherent and nonadherent cells. Results of biosynthetic labeling experiments in NRK fibroblasts showed that the synthesis and biosynthetic processing of the beta 1 integrin subunit proceed in the absence of cell attachment; however, when examining the behavior of preexisting cell surface integrins, we observed that the alpha beta 1 integrins are internalized and degraded when adhesion to substratum is blocked. A kinetic analysis of integrin internalization in cycloheximide-treated NRK cells showed that each of the fibroblast integrins we examined (in both the beta 1 and beta 3 families) are lost from the cell surface after detachment from substratum. Thus, the default integrin life cycle in fibroblasts involves continuous synthesis, processing, transport to the cell surface, and internalization/degradation. Interestingly, studies with NIH-3T3 cells expressing alpha 1 beta 1 integrin showed that the loss of cell-surface alpha 5 beta 1 integrin is blocked by adhesion of cells to dishes coated with type IV collagen (a ligand for alpha 1 beta 1 integrin) as well as fibronectin. Similarly, adhesion of these cells to dishes coated with type IV collagen stabilizes the surface expression of alpha 5 beta 1 as well as alpha 1 beta 1 integrin. We propose that the adhesion of fibroblasts to extracellular matrix protein alters the integrin life cycle and permits retention of these proteins at the cell surface where they can play important roles in transmitting adhesion-dependent signals.  相似文献   

16.
Altered airway smooth muscle (ASM) function and enrichment of the extracellular matrix (ECM) with interstitial collagen and fibronectin are major pathological features of airway remodeling in asthma. We have previously shown that these ECM components confer enhanced ASM proliferation in vitro, but their action on its newly characterized secretory function is unknown. Here, we examined the effects of fibronectin and collagen types I, III, and V on IL-1beta-dependent secretory responses of human ASM cells, and characterized the involvement of specific integrins. Cytokine production (eotaxin, RANTES, and GM-CSF) was evaluated by ELISA, RT-PCR, and flow cytometry. Function-blocking integrin mAbs and RGD (Arg-Gly-Asp)-blocking peptides were used to identify integrin involvement. IL-1beta-dependent release of eotaxin, RANTES, and GM-CSF was enhanced by fibronectin and by fibrillar and monomeric type I collagen, with similar changes in mRNA abundance. Collagen types III and V had no effect on eotaxin or RANTES release but did modulate GM-CSF. Analogous changes in intracellular cytokine accumulation were found, but in <25% of the total ASM cell population. Function-blocking Ab and RGD peptide studies revealed that alpha2beta1, alpha5beta1, alphavbeta1, and alphavbeta3 integrins were required for up-regulation of IL-1beta-dependent ASM secretory responses by fibronectin, while alpha2beta1 was an important transducer for type I collagen. Thus, fibronectin and type I collagen enhance IL-1beta-dependent ASM secretory responses through a beta1 integrin-dependent mechanism. Enhancement of cytokine release from ASM by these ECM components may contribute to airway wall inflammation and remodeling in asthma.  相似文献   

17.
Cooperative action of inflammatory mediators and adhesion molecules orchestrates eosinophil recruitment during allergic inflammation in the airways. This study investigated the mechanisms involved in increasing eosinophil adhesion to human bronchial epithelial cells (HBEC) following priming and activation of eosinophils with TNF-alpha and complement protein C5a, respectively. Under primed conditions, eosinophil adhesion increased 3-fold from basal (16%), and the effect was significantly greater (p < 0.05) than the increase following stimulation with C5a alone (2-fold). Eosinophil contact with HBEC was essential for priming. In contrast to C5a, adhesion of eotaxin-stimulated eosinophils to HBEC was not primed with TNF-alpha nor IL-5, a known eosinophil-priming agent. Priming caused activation of alpha(M)beta(2) integrin; mAb against either the common beta(2) integrin subunit or its ICAM-1 ligand reduced the primed component of adhesion. Using mAbs against beta(1) or alpha(5), but not alpha(4) integrin subunit, together with anti-beta(2) integrin mAb, reduced stimulated adhesion to basal levels. Cross-linking alpha(5)beta(1) integrin increased alpha(M)beta(2) integrin-dependent adhesion of eosinophils. There are no known adhesion molecule ligands of alpha(5)beta(1) integrin expressed on HBEC; however, fibronectin, the major matrix protein ligand for alpha(5)beta(1) integrin, was detected in association with HBEC monolayers. A mAb against fibronectin, in combination with anti-beta(2) integrin mAb, reduced adhesion to basal levels. In conclusion, alpha(5)beta(1) integrin may provide a contact-dependent costimulus for eosinophil priming that, together with TNF-alpha, potentiated C5a activation of alpha(M)beta(2) integrin and increased eosinophil adhesion to ICAM-1. Fibronectin, associated with HBEC, may act as a ligand for alpha(5)beta(1) integrin. Dual regulation of eosinophil priming may prevent inappropriate activation of eosinophils in the circulation.  相似文献   

18.
Our previous study (Am J Physiol Heart Circ Physiol 288: H1331-H1338, 2005) demonstrated that TNF-alpha induced significant leukocyte adhesion without causing increases in microvessel permeability, and that formyl-Met-Leu-Phe-OH (fMLP)-stimulated neutrophils in the absence of adhesion increased microvessel permeability via released reactive oxygen species (ROS). The objective of our present study is to investigate the mechanisms that regulate neutrophil respiratory burst and the roles of fMLP-stimulated ROS release from adherent leukocytes in microvessel permeability. A technique that combines single-microvessel perfusion with autologous blood perfusion was employed in venular microvessels of rat mesenteries. Leukocyte adhesion was induced by systemic application of TNF-alpha. Microvessel permeability was assessed by measuring hydraulic conductivity (L(p)). The 2-h autologous blood perfusion after TNF-alpha application increased leukocyte adhesion from 1.2 +/- 0.2 to 13.3 +/- 1.6 per 100 microm of vessel length without causing increases in L(p). When fMLP (10 microM) was applied to either perfusate (n = 5) or superfusate (n = 8) in the presence of adherent leukocytes, L(p) transiently increased to 4.9 +/- 0.9 and 4.4 +/- 0.3 times the control value, respectively. Application of superoxide dismutase or an iron chelator, deferoxamine mesylate, after fMLP application prevented or attenuated the L(p) increase. Chemiluminescence measurements in isolated neutrophils demonstrated that TNF-alpha alone did not induce ROS release but that preexposure of neutrophils to TNF-alpha in vivo or in vitro potentiated fMLP-stimulated ROS release. These results suggest a priming role of TNF-alpha in fMLP-stimulated neutrophil respiratory burst and indicate that the released ROS play a key role in leukocyte-mediated permeability increases during acute inflammation.  相似文献   

19.
20.
《The Journal of cell biology》1994,127(4):1139-1147
Expression of the leukocyte (beta 2) integrins is required for many functions of activated neutrophils (PMN), even when there is no recognized ligand for any beta 2 integrin. To investigate the hypothesis that beta 2 integrins may be involved in a signal transduction pathway related to cytoskeletal reorganization, we examined whether beta 2 integrins have a role in tyrosine phosphorylation of the cytoskeletal protein paxillin. Treatment of PMN in suspension with phorbol esters, f-Met-Leu-Phe, and TNF-alpha resulted in paxillin tyrosine phosphorylation. However, treatment of beta 2-deficient (LAD) PMN failed to induce paxillin tyrosine phosphorylation. Normal PMN phosphorylated paxillin in response to adhesion to immune complexes, while the LAD PMN did not. Adhesion of phorbol ester activated-LAD PMN to the extracellular matrix proteins fibronectin, laminin, and vitronectin failed to induce paxillin tyrosine phosphorylation. Treatment of activated normal PMN with mAb directed against the beta 2 integrin alpha chains demonstrated that CR3 (alpha M beta 2) was required for paxillin phosphorylation. Transfection of the cell line K562 with CR3 confirmed that CR3 ligation resulted in paxillin tyrosine phosphorylation. As a control, K562 transfected with CR2 (CD21) which bound equally avidly to the same complement C3-derived ligand (C3bi) as the CR3 transfectants, showed no enhanced tyrosine phosphorylation of paxillin upon receptor ligation. While both CR2 and CR3 transfectants showed efficient adhesion to a C3bi-coated surface, only the CR3 transfectants spread during adhesion and phosphorylated paxillin. Together these data demonstrate that CR3 is required for paxillin phosphorylation during activation of both adherent and nonadherent PMN. Even PMN activated in suspension or by adhesion to immune complexes, when no CR3 ligand is apparent, still require CR3 for a signal transduction pathway leading to paxillin tyrosine phosphorylation. This pathway is likely to be important for PMN function in inflammation and host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号