首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long distance atmospheric transport of bacterial cells is often implied as a driver of the apparent cosmopolitan distribution of bacterial taxa. Surprisingly, efforts to measure immigration in bacterial communities are rare. An 8-week time series of within-lake bacterial community composition and atmospheric deposition rates and composition were used to estimate the influence of immigration on bacterial community dynamics in two north temperate lakes. Characterization of bacterial community dynamics using automated ribosomal intergenic spacer analysis suggested moderate overlap in composition between the lakes and atmospherically deposited cells. However, taxa that appeared to be delivered by atmospheric deposition had a relatively minor influence on lake bacterial community dynamics. The weak influence of immigrating bacterial taxa suggests that a species-sorting concept best describes aquatic bacterial metacommunity dynamics.  相似文献   

2.
Temporal and spatial patterns of bacteria and heterotrophic nanoflagellates (HNF) were studied monthly from January 1997 to December 1998 in the middle Adriatic Sea. Bacterial and HNF relationships with phytoplankton biomass and temperature were analyzed to examine how the relative importance of bottom-up and top-down factors may shift over seasons and locations. For the coastal area, an inconsistent relationship between bacterial abundance and chlorophyll a and a stronger relationship between bacterial abundance and bacterial production suggest that other substrates than those of phytoplankton origin are important for bacteria. The analysis of simultaneous effects of temperature and bacterial production on bacterial abundance showed that the effect of temperature obscured the effects of bacterial production, suggesting that bacterial growth itself is highly temperature-dependent. The relationship between HNF abundance and bacterial abundance was slightly improved by the inclusion of in situ temperature, bacterial production or both parameters, as additional independent variables. About 60% of the variability in HNF abundance can be explained by bacterial abundance, bacterial production and temperature. In the open sea, tight coupling of bacterial abundance with chlorophyll a concentrations implied that phytoplankton-derived substrates have a dominant role in controlling bacterial abundance. During the colder months, bacterial abundance was high enough to support higher HNF abundance than observed, suggesting that predation exerted a minor depressing influence on bacterial abundance during that period. During the spring-summer period, HNF controlled bacterial standing stocks by direct cropping of bacterial production.Communicated by: H.-D. Franke  相似文献   

3.
BACKGROUND: In the past decade, flow cytometry has become a useful and precise alternative to microscopic bacterial cell counts in aquatic samples. However, little evidence of its usefulness for the evaluation of bacterial biovolumes has emerged in from the literature. METHODS: The light scattering and cell volume of starved bacterial strains and natural bacterial communities from the Black Sea were measured by flow cytometry and epifluorescence microscopy, respectively, in order to establish a relationship between light scattering and cell volume. RESULTS: With the arc-lamp flow cytometer, forward angle light scatter (FALS) was related to cell size in both the starved strains and natural communities, although regression parameters differed. We tested the predictive capacity of the FALS verous cell size relationship in a bacterial community from the North Sea. That analysis showed that a reliable bacterial biovolume prediction of a natural bacterial community can be obtained from FALS using a model generated from natural bacterial community data. CONCLUSIONS: Bacterial biovolume is likely to be related to FALS measurements. It is possible to establish a generally applicable model derived from natural bacterial assemblages for flow cytometric estimation of bacterial biovolumes by light scatter.  相似文献   

4.
Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils. While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA concentrations are relatively stable under different conditions. We also found a good agreement in the community structure classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a complementary method is a good strategy to yield higher resolving power in bacterial community structure.  相似文献   

5.
  1. Understanding the successional patterns of microbial communities during a phytoplankton bloom is crucial for predicting the compositional and functional stability of lake ecosystems in response to the disturbance of a bloom. Previous studies on bacterial communities associated with blooms have rarely studied the dynamics of these communities. The successional patterns of bacterial communities within different micro-habitats (i.e. water column versus particles) and mechanisms that shape these communities that differ in composition and structure remain unclear.
  2. We selected a eutrophic urban lake to investigate the succession of bacterial communities during a bloom. We divided the bacterial communities into free-living (FL) and particle-attached (PA) groups based on their different lifestyles. The amplicon-based 16S rRNA gene high-throughput sequencing technology was used to obtain bacterial community composition and phylogenetic structure.
  3. Our study showed distinct successional patterns between FL and PA bacterial communities, and the two bacterial lifestyles showed different responses and resilience to the bloom, in terms of diversity and relative abundance of bacterial taxa. Alpha-diversity of the PA bacterial community decreased during the bloom, whereas that of the FL bacterial community increased. More taxa in the FL bacterial community showed resilience after the disturbance than in the PA bacterial community.
  4. The influence of phytoplankton blooms on the assembly of the bacterial community can be viewed as niche selection that led to the decrease in the relative importance of stochastic processes in shaping both FL and PA bacterial communities. This study shows the ecological significance of the bacterial community response to bloom events in lakes. It also shows that assembly processes differ for bacterial communities that have different lifestyles in lake ecosystems disturbed by phytoplankton blooms.
  相似文献   

6.
D H Lee  Y G Zo    S J Kim 《Applied microbiology》1996,62(9):3112-3120
We describe a new method for studying the structure and diversity of bacterial communities in the natural ecosystem. Our approach is based on single-strand-conformation polymorphism (SSCP) analysis of PCR products of 16S rRNA genes from complex bacterial populations. A pair of eubacterial universal primers for amplification of the variable V3 region were designed from the 16S rRNA sequences of 1,262 bacterial strains. The PCR conditions were optimized by using genomic DNAs from five gram-positive and seven gram-negative strains. The SSCP analysis of the PCR products demonstrated that a bacterial strain generated its characteristic band pattern and that other strains generated other band patterns, so that the relative diversity in bacterial communities could be measured. In addition, this method was sensitive enough to detect a bacterial population that made up less than 1.5% of a bacterial community. The distinctive differences between bacterial populations were observed in an oligotrophic lake and a eutrophic pond in a field study. The method presented here, using combined PCR amplification and SSCP pattern analyses of 16S rRNA genes, provides a useful tool to study bacterial community structures in various ecosystems.  相似文献   

7.
Bacterial nucleic acid synthesis in plants following bacterial contact   总被引:7,自引:0,他引:7  
Summary After plants have been in contact with a suspension of bacteria one finds in plant cells self replicating bacterial DNA and replicating molecules formed of bacterial DNA combined with plant DNA. Moreover newly synthesized bacterial RNA appears in the host cell. These phenomena seem to be due to a transfer of bacterial DNA into plant cells.  相似文献   

8.
《Biotechnology advances》2017,35(4):490-504
The success of bioaugmentation processes for groundwater bioremediation requires efficient transport of bacteria in the subsurface environment. In this paper, the factors that influence transport of bacterial cells in porous media are reviewed and the effects of surfactants on the transport are discussed. Movement of bacterial cells in porous media is a process driven by advection and hydrodynamic dispersion forces of fluids. Immobilization of bacterial cells takes place due to processes such as adsorption and straining. Blocking and ripening along with bacterial migration process decrease and increase the retention of cells in porous media, respectively. Physicochemical properties of the porous media, groundwater chemistry, and properties of the bacterial cells affect the transport behavior. Surfactants have the potential to modify bacterial surface properties for both bacterial cells and medium solids, and thus enhance bacterial transport.  相似文献   

9.
The use of phages is an attractive option to battle antibiotic resistant bacteria in certain bacterial infections, but the role of phage ecology in bacterial infections is obscure. Here we surveyed the phage ecology in septicemia, the most severe type of bacterial infection. We observed that the majority of the bacterial isolates from septicemia patients spontaneously secreted phages active against other isolates of the same bacterial strain, but not to the strain causing the disease. Such phages were also detected in the initial blood cultures, indicating that phages are circulating in the blood at the onset of sepsis. The fact that most of the septicemic bacterial isolates carry functional prophages suggests an active role of phages in bacterial infections. Apparently, prophages present in sepsis-causing bacterial clones play a role in clonal selection during bacterial invasion.  相似文献   

10.
群体感应(QS)广泛存在于细菌中,是细菌根据细胞密度变化调控基因表达的一种机制。许多植物病原菌依赖QS调控致病基因和毒性因子的表达,导致植物发病,因此通过抑制QS效应就为控制细菌病害提供了一种有效的方法。目前发现许多途径可以干扰细菌的QS,如:产生可使信号分子降解的酶,产生病原菌信号分子的类似物与信号分子受体蛋白竞争结合来阻断病原菌的群体感应,利用QS中信号分子来诱发寄主抗性。系统阐述了细菌QS及其干扰策略。  相似文献   

11.
By combining intravital multiphoton microscopy and bacterial genetics we have developed a technique enabling real-time imaging of bacterial proliferation and tissue responses in a live animal. Spatial and temporal control of the infection process was achieved by microinjecting GFP(+)-expressing uropathogenic Escherichia coli (UPEC) into tubules of exteriorized kidneys in live rats. GFP(+) was introduced in the clinical UPEC strain CFT073 as a single-copy chromosomal gene fusion. Within hours, bacterial colonization was accompanied by marked ischaemic effects, perivascular leakage, loss of tubular integrity and localized recruitment of immune cells. The pathophysiology was altered in response to an isogenic bacterial strain lacking the exotoxin haemolysin, revealing the subtle and temporal roles of bacterial virulence factors in vivo. Microdissection and RNA extraction of the injected nephron allowed molecular analysis of prokaryotic and eukaryotic gene expression. The techniques described here can be applied to study the integrated cell communication evoked by a variety of bacterial pathogens, assisting in the design of strategies to combat bacterial infections.  相似文献   

12.
Various bacterial components (e.g., endotoxin, teichoic and lipoteichoic acids, peptidoglycans, DNA) induce or enhance inflammation by stimulating the innate immune system and/or are directly toxic in eukariotic cells (e.g., hemolysins). When antibiotics which inhibit bacterial protein synthesis kill bacteria, smaller quantities of proinflammatory or toxic compounds are released in vitro and in vivo than during killing of bacteria by beta-lactams and other cell-wall active drugs. In general, high antibiotic concentrations liberate lower quantities of bacterial proinflammatory or toxic compounds than concentrations close to the minimum inhibitory concentration. In animal models of Escherichia coli Pseudomonas aeruginosa and Staphylococcus aureus peritonitis/sepsis and of Streptococcus pneumoniae meningitis, a lower release of proinflammatory bacterial compounds was associated with a reduced mortality or neuronal injury. Pre-treatment with a bacterial protein synthesis inhibitor reduced the strong release of bacterial products usually observed during treatment with a beta-lactam antibiotic. Data available strongly encourage clinical trials comparing antibiotic regimens with different release of proinflammatory/toxic bacterial products. The benefit of the approach to reduce the liberation of bacterial products should be greatest in patients with a high bacterial load.  相似文献   

13.
Metabolic regulation of antibiotic resistance   总被引:1,自引:0,他引:1  
It is generally assumed that antibiotics and resistance determinants are the task forces of a biological warfare in which each resistance determinant counteracts the activity of a specific antibiotic. According to this view, antibiotic resistance might be considered as a specific response to an injury, not necessarily linked to bacterial metabolism, except for the burden that the acquisition of resistance might impose on the bacteria (fitness costs). Nevertheless, it is known that changes in bacterial metabolism, such as those associated with dormancy or biofilm formation, modulate bacterial susceptibility to antibiotics (phenotypic resistance), indicating that there exists a linkage between bacterial metabolism and antibiotic resistance. The analyses of the intrinsic resistomes of bacterial pathogens also demonstrate that the building up of intrinsic resistance requires the concerted action of many elements, several of which play a relevant role in the bacterial metabolism. In this article, we will review the current knowledge on the linkage between bacterial metabolism and antibiotic resistance and will discuss the role of global metabolic regulators such as Crc in bacterial susceptibility to antibiotics. Given that growing into the human host requires a metabolic adaptation, we will discuss whether this adaptation might trigger resistance even in the absence of selective pressure by antibiotics.  相似文献   

14.

Background

Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral.

Methodology/Principal Findings

Denaturing Gradient Gel Electrophoresis (DGGE) of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by “White Syndrome” (WS) underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome.

Conclusions/Significance

This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine invertebrate associates. Finally, the results did not support the contention that a single bacterial pathogen may be the causative agent of WS Acroporids on the GBR.  相似文献   

15.
We describe a new molecular technique for the analysis of microbial species and complex microbial populations based on the separation of PCR-amplified 16S rDNA fragments by denaturing high-performance liquid chromatography (DHPLC). Using marine bacterial samples, we determined the optimum conditions for the analysis of bacterial species and the examination of complex bacterial assemblages obtained from different environments. The incorporation of a 40-bp GC clamp into the amplification primer was essential to effectively discriminate genetic differences in DHPLC-primers with a 20-, 10-, or 0-bp GC clamp length were less efficient. A 64.5 degrees C column temperature in DHPLC allowed optimal separation of species in a complex bacterial population. PCR-DHPLC analysis of bacterial assemblages demonstrated profiles with distinguishable peaks, which constituted the different populations and their degree of abundance. Fraction collection and DNA sequencing from profile peaks enabled bacterial identification. PCR-DHPLC analysis can also provide opportunities for describing bacterial communities, cloning bacteria, and monitoring bacterial populations in environments of interest.  相似文献   

16.
MOTIVATION: Incorporation of selenocysteine (Sec) into proteins in response to UGA codons requires a cis-acting RNA structure, Sec insertion sequence (SECIS) element. Whereas SECIS elements in Escherichia coli are well characterized, a bacterial SECIS consensus structure is lacking. RESULTS: We developed a bacterial SECIS consensus model, the key feature of which is a conserved guanosine in a small apical loop of the properly positioned structure. This consensus was used to build a computational tool, bSECISearch, for detection of bacterial SECIS elements and selenoprotein genes in sequence databases. The program identified 96.5% of known selenoprotein genes in completely sequenced bacterial genomes and predicted several new selenoprotein genes. Further analysis revealed that the size of bacterial selenoproteomes varied from 1 to 11 selenoproteins. Formate dehydrogenase was present in most selenoproteomes, often as the only selenoprotein family, whereas the occurrence of other selenoproteins was limited. The availability of the bacterial SECIS consensus and the tool for identification of these structures should help in correct annotation of selenoprotein genes and characterization of bacterial selenoproteomes.  相似文献   

17.
Both plants and humans have inducible defense mechanisms. This passive defense strategy leaves the host unprotected for a period of time until resistance is activated. Moreover, many bacterial pathogens have evolved cell-cell communication (quorum-sensing) mechanisms to mount population-density-dependent attacks to overwhelm the host's defense responses. Several chemicals and enzymes have been investigated for years for their potential to target the key components of bacterial quorum-sensing systems. These quorum-quenching reagents, which block bacterial cell-cell communications, can disintegrate a bacterial population-density-dependent attack. It has now been shown that a quorum-quenching mechanism can be engineered in plants and might be used as a strategy in controlling bacterial pathogens and to build up a proactive defense barrier.  相似文献   

18.
Autophagy, an intracellular degradation process highly conserved from yeast to humans, is viewed as an important defence mechanism to clear intracellular bacteria. However, recent work has shown that autophagy may have different roles during different bacterial infections that restrict bacterial replication (antibacterial autophagy), act in cell autonomous signalling (non‐bacterial autophagy) or support bacterial replication (pro‐bacterial autophagy). This review will focus on newfound interactions of autophagy and pathogenic bacteria, highlighting that, in addition to delivering bacteria to the lysosome, autophagy responding to bacterial invasion may have a much broader role in mediating disease outcome.  相似文献   

19.
As pathogenic bacteria become increasingly resistant to antibiotics, antimicrobials with mechanisms of action distinct from current clinical antibiotics are needed. Gram-negative bacteria pose a particular problem because they defend themselves against chemicals with a minimally permeable outer membrane and with efflux pumps. During infection, innate immune defense molecules increase bacterial vulnerability to chemicals by permeabilizing the outer membrane and occupying efflux pumps. Therefore, screens for compounds that reduce bacterial colonization of mammalian cells have the potential to reveal unexplored therapeutic avenues. Here we describe a new small molecule, D66, that prevents the survival of a human Gram-negative pathogen in macrophages. D66 inhibits bacterial growth under conditions wherein the bacterial outer membrane or efflux pumps are compromised, but not in standard microbiological media. The compound disrupts voltage across the bacterial inner membrane at concentrations that do not permeabilize the inner membrane or lyse cells. Selection for bacterial clones resistant to D66 activity suggested that outer membrane integrity and efflux are the two major bacterial defense mechanisms against this compound. Treatment of mammalian cells with D66 does not permeabilize the mammalian cell membrane but does cause stress, as revealed by hyperpolarization of mitochondrial membranes. Nevertheless, the compound is tolerated in mice and reduces bacterial tissue load. These data suggest that the inner membrane could be a viable target for anti-Gram-negative antimicrobials, and that disruption of bacterial membrane voltage without lysis is sufficient to enable clearance from the host.  相似文献   

20.
The influence of bacterial communities on the formation of carbonate deposits such as moonmilk was investigated in Altamira Cave (Spain). The study focuses on the relationship between the bacterial communities at moonmilk deposits and those forming white colonizations, which develop sporadically throughout the cave. Using molecular fingerprinting of the metabolically active bacterial communities detected through RNA analyses, the development of white colonizations and moonmilk deposits showed similar bacterial profiles. White colonizations were able to raise the pH as a result of their metabolism (reaching in situ pH values above 8.5), which was proportional to the nutrient supply. Bacterial activity was analyzed by nanorespirometry showing higher metabolic activity from bacterial colonizations than uncolonized areas. Once carbonate deposits were formed, bacterial activity decreased drastically (down to 5.7% of the white colonization activity). This study reports on a specific type of bacterial community leading to moonmilk deposit formation in a cave environment as a result of bacterial metabolism. The consequence of this process is a macroscopic phenomenon of visible carbonate depositions and accumulation in cave environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号