首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
常压低温等离子体对微生物的杀灭研究   总被引:11,自引:0,他引:11  
初步探讨APPJ等离子体对微生物的影响机制 ,用APPJ与DBD两种不同类型等离子体对不同代表微生物金黄色葡萄球菌、大肠杆菌、枯草杆菌黑色变种进行处理 ,分析比较不同微生物对不同等离子体的存活曲线 ;进而利用扫描电镜观察微生物细胞壁、膜等外部结构的变化。结果显示两种等离子体对不同微生物的杀灭作用均为先快后慢 ,APPJ的作用效果远好于DBD(DBD对金黄色葡萄球菌及枯草杆菌黑色变种芽孢的D值为 70s ,而APPJ的D值为 4s)。同时 ,在APPJ的作用下 ,大肠杆菌细胞壁、膜有明显破裂发生。这证明 ,APPJ可快速有效地杀灭微生物体 ,其灭菌机制可能与微生物细胞壁、膜的破裂有关。  相似文献   

2.
为研究家用微波炉对少量液体培养基的灭菌效果,对100 -700 mL液体培养基采取微波分别进行灭菌,测定其灭菌时间,并对达到灭菌效果的培养基通过接种不同细菌进行质检.结果显示100、200、300、400、500、600、700 mL液体培养基分别在4.5、5.0、7.0、9.0、12.0、19.0、25.0 min达到最有效的灭菌效果.室温保存15 d仍无细菌生长.枯草杆菌黑色变种芽胞菌测试无菌生长.金黄色葡萄球菌、大肠埃希菌及普通变形杆菌在液体培养基里的生长现象、特种后细菌的菌落和形态染色特征及其生化反应均无明显差异.实验表明2 450 MHz,700 W的微波炉对100 - 700 mL的液体培养基不但能快速达到有效的灭菌效果,且营养成分不会被破坏.  相似文献   

3.
细菌对消毒剂抗性机理研究进展   总被引:1,自引:0,他引:1  
消毒剂通过抑制膜的主动运输、抑制微生物的代谢、扰乱微生物的DNA复制、使微生物细胞裂解而导致胞内成分渗漏以及使胞内物质凝结等方面发挥灭菌作用.消毒剂在杀灭细菌和控制细菌污染方面具有重要作用,但细菌对消毒剂也会产生抗性.细菌对消毒剂的抗性机制主要通过形成生物被膜,阻挡或外排机制减少消毒剂分子进入细胞,使消毒剂分子失活,以及其他表型性耐药等4个途径来实现,其中通过形成生物被膜阻止消毒剂分子进入细菌细胞或在进入细胞前使消毒剂失去效用,在细菌对消毒剂的抗性机制中具有重要作用.以实际污染的主要菌株为对象,研究它们对常用消毒剂的抗性机制,对控制细菌污染具有极大的应用价值和现实意义.  相似文献   

4.
高压热杀菌技术(High-pressure Thermal Sterilization,HPTS)是一种重要的新型食品杀菌技术,可杀灭细菌芽胞。目前对HPTS杀灭芽胞的效果和动力学的研究较多,但关于HPTS杀灭芽胞机理研究却较少并缺少总结分析。深入完整地综述了有关HPTS灭活细菌芽胞机理的文献报道,着重从HPTS对2,6-吡啶二羧酸(2,6-Pyridinedicarboxylic acid,DPA)释放、小分子酸溶性蛋白(Small acid-soluble protein, SASP)的降解、皮层裂解酶活力、芽胞内膜的损伤和皮层的水解等方面的作用阐述其杀灭细菌芽胞的机理。  相似文献   

5.
以L-丙氨酸缓冲液为发芽剂,结合芬顿反应原理,观察发芽-氧化损伤效应对芽胞的杀灭效果,以期为新型炭疽疫源地净化方法的深入研究奠定基础。以腊样芽胞为试验菌,采用透射电镜、激光扫描共聚焦显微镜、活菌计数等方法观察芽胞发芽过程的超微结构、核酸含量变化,以及在芬顿反应的联合作用下发芽体的活性变化。在20~30 min的发芽过程中,芽胞核心密度降低,核心与皮质、皮质与外壁之间界限模糊,芽胞外壁和芽胞衣有破裂,通透性增加,进一步有皮质消失、细胞核与细胞质融合、细胞膜基本形成的现象;发芽体荧光强度不断增加,显示菌体中核酸的活性和含量不断增加;发芽体对化学因子的抗力明显下降,H2O2浓度为0.20 mol/L的Fenton反应系统作用60 min时,发芽体灭活可达到3.016个对数级。诱导发芽和反应的联合处理程序可显著提高芽胞的灭活水平。  相似文献   

6.
消毒剂过氧化氢脲性能的实验研究   总被引:4,自引:0,他引:4  
过氧化氢脲为过氧化氢类消毒剂,实验表明,其5%水溶液25℃时有良好的的杀菌作用。杀灭细菌营养繁殖体需2min,作用15min可将细菌芽孢全部杀灭。作用30min可将HbBsAg完全灭活。提高浓度、温度,延长作用时间或降低pH值,可加强其杀菌作用。  相似文献   

7.
复合益生菌体外抑菌杀病毒作用研究   总被引:2,自引:0,他引:2  
采用平板抑菌法和液体试管法来研究复合益生菌对蜡样芽胞杆菌和伤寒沙门菌的作用。另外,通过提取复合益生菌与肠道病毒作用前后的总RNA并用RT-PCR扩增-琼脂糖凝胶电泳的方法来研究两者的作用。结果显示,复合益生菌对致病性蜡样芽胞杆菌和伤寒沙门菌具有明显的抑制作用,对肠道病毒具有杀灭作用。  相似文献   

8.
认识和描述不同细菌芽胞α/β-SASP的分子结构特征,为深入开展以α/β-SASP为靶向修饰的应用技术提供科学依据.运用生物信息学方法和技术,比对分析4种菌株,炭疽芽胞杆菌Ames 株、苏云金芽胞杆菌serovar konkukian 97-27 株、腊样芽胞杆菌ATCC 10987株、枯草芽胞杆菌168 株的α/β-SASP基因及蛋白质一、二、三级结构的异同.基因-ClustalW2;一级结构-ClustalW2和ProtParam tool;二级结构-SOPMA;三级结构-SWISS-MODEL和Swiss-Pdbviewer4.0.1.4种菌株的α/β-SASP基因及蛋白质一、二、三级结构有明显的同源性,炭疽芽胞、苏云金芽胞和腊样芽胞的生物学特征非常相似.在开展细菌芽胞的α/β-SASP基因及生物效应研究时,可以首选苏云金杆菌芽胞或腊样杆菌芽胞作为炭疽杆菌芽胞的试验菌,其次可以选择枯草杆菌芽胞.  相似文献   

9.
目的验证5种消毒剂的杀菌性能及消毒效果,为环境微生物控制的策略及实施提供依据。方法采用中和剂鉴定试验测定相应中和剂的中和效果,然后通过悬液定量杀灭试验测定消毒剂的杀菌效果和作用时间;最后通过载体定量杀灭试验测定消毒剂在最短有效作用时间下对不同载体表面微生物的杀灭效果。结果试验选取的中和剂对测试的消毒剂有良好的中和作用,中和剂及中和产物对测试微生物的生长无显著影响,可用于悬液定量杀灭试验及载体定量杀灭试验。悬液定量杀灭试验中,5种消毒剂对测试微生物均具有较高的杀灭作用,对细菌的杀灭对数值在4.26~6.44之间,对真菌的杀灭对数值在3.51~5.35之间,芽孢杆菌的杀灭对数值为4.21。载体定量杀灭试验中,消毒剂对细菌的杀灭对数值在4.25~5.65之间,对真菌的杀灭对数值在3.31~4.72之间,芽孢杆菌的杀灭对数值为3.61。结论 5种消毒剂对测试微生物的杀灭效果均符合标准规定,可用于洁净区的表面消毒灭菌。  相似文献   

10.
比较细菌芽胞的遗传同源性、结构和抗力差异,为炭疽芽胞的替代试验菌的可靠评价提供依据。采用资料检索、生物信息分析、显微镜观察和微生物学技术分析不同芽胞的遗传同源性、超微结构和抗力差异。炭疽芽胞与腊样芽胞的结构和大小相似,生物遗传同源性最近,对热力、UVC和有效氯的抗力相近。腊样芽胞对炭疽芽胞的代表性最好,可以倾向性选用其替代炭疽芽胞进行试验研究。  相似文献   

11.
AIMS: To determine the mechanism of killing of spores of Bacillus subtilis by ortho-phthalaldehyde (OPA), an aromatic dialdehyde currently in use as an antimicrobial agent. METHODS AND RESULTS: OPA is sporicidal, although spores are much more OPA resistant than are vegetative cells. Bacillus subtilis mutants deficient in DNA repair, spore DNA protection and spore coat assembly have been used to show that (i) the coat appears to be a major component of spore OPA resistance, which is acquired late in sporulation of B. subtilis at the time of spore coat maturation, and (ii) B. subtilis spores are not killed by OPA through DNA damage but by elimination of spore germination. Furthermore, OPA-treated spores that cannot germinate are not recovered by artificial germinants or by treatment with NaOH or lysozyme. CONCLUSIONS: OPA appears to kill spores by blocking the spore germination process. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides information on the mechanism of spore resistance to, and spore killing by, the disinfectant, OPA.  相似文献   

12.
AIMS: To determine the mechanism whereby the new disinfectant Sterilox kills spores of Bacillus subtilis. METHODS AND RESULTS: Bacillus subtilis spores were readily killed by Sterilox and spore resistance to this agent was due in large part to the spore coats. Spore killing by Sterilox was not through DNA damage, released essentially no spore dipicolinic acid and Sterilox-killed spores underwent the early steps in spore germination, including dipicolinic acid release, cortex degradation and initiation of metabolism. However, these germinated spores never swelled and many had altered permeability properties. CONCLUSIONS: We suggest that Sterilox treatment kills dormant spores by oxidatively modifying the inner membrane of the spores such that this membrane becomes non-functional in the germinated spore leading to spore death. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides information on the mechanism of spore resistance to and spore killing by a new disinfectant.  相似文献   

13.
Treatment of wild-type spores of Bacillus subtilis with glutaraldehyde or an iodine-based disinfectant (Betadine) did not cause detectable mutagenesis, and spores (termed alpha-beta-) lacking the major DNA-protective alpha/beta-type, small, acid-soluble proteins (SASP) exhibited similar sensitivity to these agents. A recA mutation did not sensitize wild-type or alpha-beta- spores to Betadine or glutaraldehyde, nor did spore treatment with these agents result in significant expression of a recA-lacZ fusion when the treated spores germinated. Spore glutaraldehyde sensitivity was increased dramatically by removal of much spore coat protein, but this treatment had no effect on Betadine sensitivity. In contrast, nitrous acid treatment of wild-type and alpha-beta- spores caused significant mutagenesis, with alpha-beta- spores being much more sensitive to this agent. A recA mutation further sensitized both wild-type and alpha-beta- spores to nitrous acid, and there was significant expression of a recA-lacZ fusion when nitrous acid-treated spores germinated. These results indicate that: (a) nitrous acid kills B. subtilis spores at least in part by DNA damage, and alpha/beta-type SASP protect against this DNA damage; (b) killing of spores by glutaraldehyde or Betadine is not due to DNA damage; and (c) the spore coat protects spores against killing by glutaraldehyde but not Betadine. Further analysis also demonstrated that spores treated with nitrous acid still germinated normally, while those treated with glutaraldehyde or Betadine did not.  相似文献   

14.
A hot-air sterilizer capable of exposing airborne microorganisms to elevated temperatures with an almost instantaneous heating time was developed and evaluated. With this apparatus, aerosolized Bacillus subtilis var. niger spores were killed in about 0.02 sec when exposed to temperatures above 260 C. This is about 500 times faster than killing times reported by others. Extrapolation and comparison of data on the time and temperature required to klll B. subtilis var. niger spores on surfaces show that approximately the same killing time is required as is necessary for spores in air, if corrections are made for the heating time of the surface.  相似文献   

15.
Sodium hypochlorite was an excellent disinfectant at low temperatures. With the addition of ethylene glycol to prevent freezing, hypochlorite solutions at low free available chlorine concentrations, were effective against Bacillus subtilis var. niger spores from 0 to -40 C. The effectiveness of this decontaminant was influenced by temperature, pH, and concentration, with pH 7.2 the optimum for decontamination at all temperatures and concentrations.  相似文献   

16.
The presence of 10 microM-Cu2+ increased the lethal effect of hydrogen peroxide on spores of Clostridium bifermentans but not on those of Clostridium sporogenes PA 3679, Clostridium perfringens, Bacillus cereus or Bacillus subtilis var. niger. Cu2+ at 100 muM also increased the lethal effect of heat on spores of C. bifermentans but not on those of B. sutilis var. niger. The rate and extent of Cu2+ uptake by spores of C. bifermentans and B. subtilis var. niger were similar, but examination of unstained sections of spores by electron microscopy suggested that Cu2+ is bound by the protoplasts of spores of C. bifermentans but not of B. subtilis var. niger.  相似文献   

17.
AIMS: To determine the mechanisms of Bacillus subtilis spore resistance to and killing by a novel sporicide, dimethyldioxirane (DMDO) that was generated in situ from acetone and potassium peroxymonosulfate at neutral pH. METHODS AND RESULTS: Spores of B. subtilis were effectively killed by DMDO. Rates of killing by DMDO of spores lacking most DNA protective alpha/beta-type small, acid-soluble spore proteins (alpha- beta- spores) or the major DNA repair protein, RecA, were very similar to that of wild-type spore killing. Survivors of wild-type and alpha- beta- spores treated with DMDO also exhibited no increase in mutations. Spores lacking much coat protein due either to mutation or chemical decoating were much more sensitive to DMDO than were wild-type spores, but were more resistant than growing cells. Wild-type spores killed with this reagent retained their large pool of dipicolinic acid (DPA), and the survivors of spores treated with DMDO were sensitized to wet heat. The DMDO-killed spores germinated with nutrients, albeit more slowly than untreated spores, but germinated faster than untreated spores with dodecylamine. The killed spores were also germinated by very high pressures and by lysozyme treatment in hypertonic medium, but many of these spores lysed shortly after their germination, and none of these treatments were able to revive the DMDO-killed spores. CONCLUSIONS: DMDO is an effective reagent for killing B. subtilis spores. The spore coat is a major factor in spore resistance to DMDO, which does not kill spores by DNA damage or by inactivating some component needed for spore germination. Rather, this reagent appears to kill spores by damaging the spore's inner membrane in some fashion. SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrates that DMDO is an effective decontaminant for spores of Bacillus species that can work under mild conditions, and the killed spores cannot be revived. Evidence has also been obtained on the mechanisms of spore resistance to and killing by this reagent.  相似文献   

18.
AIMS: To elucidate the factors influencing the sensitivity of Bacillus subtilis spores in killing and disrupting by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. METHODS AND RESULTS: Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. CONCLUSIONS: Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore's cortex-lytic enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion.  相似文献   

19.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to aqueous ozone. METHODS AND RESULTS: Killing of B. subtilis spores by aqueous ozone was not due to damage to the spore's DNA, as wild-type spores were not mutagenized by ozone and wild-type and recA spores exhibited very similar ozone sensitivity. Spores (termed alpha-beta-) lacking the two major DNA protective alpha/beta-type small, acid-soluble spore proteins exhibited decreased ozone resistance but were also not mutagenized by ozone, and alpha-beta- and alpha-beta-recA spores exhibited identical ozone sensitivity. Killing of spores by ozone was greatly increased if spores were chemically decoated or carried a mutation in a gene encoding a protein essential for assembly of the spore coat. Ozone killing did not cause release of the spore core's large depot of dipicolinic acid (DPA), but these killed spores released all of their DPA after a subsequent normally sublethal heat treatment and also released DPA much more readily when germinated in dodecylamine than did untreated spores. However, ozone-killed spores did not germinate with either nutrients or Ca(2+)-DPA and could not be recovered by lysozyme treatment. CONCLUSIONS: Ozone does not kill spores by DNA damage, and the major factor in spore resistance to this agent appears to be the spore coat. Spore killing by ozone seems to render the spores defective in germination, perhaps because of damage to the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of spore killing by and resistance to ozone.  相似文献   

20.
Mineralization and heat resistance of bacterial spores.   总被引:5,自引:2,他引:3       下载免费PDF全文
The heat resistances of the fully demineralized H-form spores of Bacillus megaterium ATCC 19213, B. subtilis var. niger, and B. stearothermophilus ATCC 7953 were compared with those of vegetative cells and native spores to assess the components of resistance due to the mineral-free spore state, presumably mainly from dehydration of the spore core, and to mineralization. Mineralization greatly increased heat resistance at lower killing temperatures but appeared to have much less effect at higher ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号