首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
Antibiotic resistance in bacteria is often associated with fitness loss, which is compensated by secondary mutations. Fusidic acid (FA), an antibiotic used against pathogenic bacteria Staphylococcus aureus, locks elongation factor-G (EF-G) to the ribosome after GTP hydrolysis. To clarify the mechanism of fitness loss and compensation in relation to FA resistance, we have characterized three S. aureus EF-G mutants with fast kinetics and crystal structures. Our results show that a significantly slower tRNA translocation and ribosome recycling, plus increased peptidyl-tRNA drop-off, are the causes for fitness defects of the primary FA-resistant mutant F88L. The double mutant F88L/M16I is three to four times faster than F88L in both reactions and showed no tRNA drop-off, explaining its fitness compensatory phenotype. The M16I mutation alone showed hypersensitivity to FA, higher activity, and somewhat increased affinity to GTP. The crystal structures demonstrate that Phe-88 in switch II is a key residue for FA locking and also for triggering interdomain movements in EF-G essential for its function, explaining functional deficiencies in F88L. The mutation M16I loosens the hydrophobic core in the G domain and affects domain I to domain II contact, resulting in improved activity both in the wild-type and F88L background. Thus, FA-resistant EF-G mutations causing fitness loss and compensation operate by affecting the conformational dynamics of EF-G on the ribosome.  相似文献   

2.
Two hypersensitive and two resistant variants of elongation factor-G (EF-G) toward fusidic acid are studied in comparison with the wild type factor. All mutated proteins are active in a cell-free translation system and ribosome-dependent GTP hydrolysis. The EF-G variants with the Thr-84-->Ala or Asp-109-->Lys mutations bring about a strong resistance of EF-G to the antibiotic, whereas the EF-Gs with substitutions Gly-16-->Val or Glu-119-->Lys are the first examples of fusidic acid-hypersensitive factors. A correlation between fusidic acid resistance of EF-G mutants and their affinity to GTP are revealed in this study, although their interactions with GDP are not changed. Thus, fusidic acid-hypersensitive mutants have the high affinity to an uncleavable GTP analog, but the association of resistant mutants with GTP is decreased. The effects of either fusidic acid-sensitive or resistant mutations can be explained by the conformational changes in the EF-G molecule, which influence its GTP-binding center. The results presented in this paper indicate that fusidic acid-sensitive mutant factors have a conformation favorable for GTP binding and subsequent interaction with the ribosomes.  相似文献   

3.
Seven variants of elongation factor G (EF-G) from Thermus thermophilus with mutations Glu494Ile, Gly495Asp, Lys496Ile, His509Leu, Lys564Ile and Tyr568Lys located in the beta-sheet of its domain IV and mutation Gly553Asp in a loop between domain III and IV were constructed using polymerase chain reaction. Functional tests demonstrated that only mutation Lys496Ile, located in the vicinity of the loop 501-504, inhibits translocation effectiveness, in the presence of the mutated EF-G. The functional analysis of all mutations constructed up to now in domain IV reveals that only those located in loops 501-504 and 573-578 markedly decrease the translocation activity of EF-G. These loops are located at the tip of domain IV and close to the decoding center of the 30S ribosomal subunit upon EF-G interaction with the ribosome. The functional role of EF-G and its domain IV in ribosomal translocation is discussed.  相似文献   

4.
The polymerase chain reaction was used to produce seven variants of Thermus thermophilus elongation factor G (EF-G) with mutations Glu494Ile, Gly495Asp, Lys496Ile, His509Leu, Lys564Ile, and Tyr568Lys, localized in the β-sheet of domain IV, and mutation Gly553Asp, residing in the loop between domains III and IV. It was demonstrated that only the Lys496Ile mutation, located close to the beginning of loop 501–504, influenced the efficiency of translocation in the presence of mutant EF-G. Functional analysis of all the known mutations of domain IV showed that only mutations in loops 501–504 and 573–578, localized to the tip of domain IV, had a pronounced effect on the translocation activity of EF-G. Upon the interaction of EF-G with ribosomes, these loops are the closest to the decoding center, formed in the structure of the 16S RNA in the 30S subunit. The role of EF-G and its domain IV in ribosomal translocation is discussed.  相似文献   

5.
Elongation factor G (EF-G) is a large, five domain GTPase that catalyses the translocation of the tRNAs on the bacterial ribosome at the expense of GTP. In the crystal structure of GDP-bound EF-G, domain 1 (G domain) makes direct contacts with domains 2 and 5, whereas domain 4 protrudes from the body of the molecule. Here, we show that the presence of both domains 4 and 5 is essential for tRNA translocation and for the turnover of the factor on the ribosome, but not for rapid single-round GTP hydrolysis by EF-G. Replacement of a highly conserved histidine residue at the tip of domain 4, His583, with lysine or arginine decreases the rate of tRNA translocation at least 100-fold, whereas the binding of the factor to the ribosome, GTP hydrolysis and P(i) release are not affected by the mutations. Various small deletions in the tip region of domain 4 decrease the translocation activity of EF-G even further, but do not block the turnover of the factor. Unlike native EF-G, the mutants of EF-G lacking domains 4/5 do not interact with the alpha-sarcin stem-loop of 23 S rRNA. These mutants are not released from the ribosome after GTP hydrolysis or translocation, indicating that the contact with, or a conformational change of, the alpha-sarcin stem-loop is required for EF-G release from the ribosome.  相似文献   

6.
Fusidic acid is a potent antibiotic against severe Gram-positive infections that interferes with the function of elongation factor G (EF-G), thereby leading to the inhibition of bacterial protein synthesis. In this study, we demonstrate that fusidic acid resistance in Staphylococcus aureus results from point mutations within the chromosomal fusA gene encoding EF-G. Sequence analysis of fusA revealed mutational changes that cause amino acid substitutions in 10 fusidic acid-resistant clinical S. aureus strains as well as in 10 fusidic acid-resistant S. aureus mutants isolated under fusidic acid selective pressure in vitro. Fourteen different amino acid exchanges were identified that were restricted to 13 amino acid residues within EF-G. To confirm the importance of observed amino acid exchanges in EF-G for the generation of fusidic acid resistance in S. aureus, three mutant fusA alleles encoding EF-G derivatives with the exchanges P406L, H457Y and L461K were constructed by site-directed mutagenesis. In each case, introduction of the mutant fusA alleles on plasmids into the fusidic acid-susceptible S. aureus strain RN4220 caused a fusidic acid-resistant phenotype. The elevated minimal inhibitory concentrations of fusidic acid determined for the recombinant bacteria were analogous to those observed for the fusidic acid-resistant clinical S. aureus isolates and the in vitro mutants containing the same chromosomal mutations. Thus, the data presented provide evidence for the crucial importance of individual amino acid exchanges within EF-G for the generation of fusidic acid resistance in S. aureus.  相似文献   

7.
The crystal structure of Thermus thermophilus elongation factor G (EF-G) carrying the point mutation His573Ala was determined at a resolution of 2.8 A. The mutant has a more closed structure than that previously reported for wild-type EF-G. This is obtained by a 10 degrees rigid rotation of domains III, IV and V with regard to domains I and II. This rotation results in a displacement of the tip of domain IV by approximately 9 A. The structure of domain III is now fully visible and reveals the double split beta-alpha-beta motif also observed for EF-G domain V and for several ribosomal proteins. A large number of fusidic acid resistant mutations found in domain III have now been possible to locate. Possible locations for the effector loop and a possible binding site for fusidic acid are discussed in relation to some of the fusidic acid resistant mutations.  相似文献   

8.
Meyer SC  Huerta C  Ghosh I 《Biochemistry》2005,44(7):2360-2368
We have characterized two homologous, single-point core mutants of a 57-residue, hyperthermophilic variant of the B1 domain of protein G (HTB1). These single-point mutations in HTB1 replace a Phe residue in the hydrophobic core with either a Glu or Asp residue. Both of these homologous core-variant mutants undergo significant structural rearrangement from the native, monomeric fold and exist as stable soluble oligomeric species of 5 and 30 nm in diameter. Gel-filtration, dynamic light scattering, circular dichroism spectroscopy, fluorescence spectroscopy, along with Congo Red and Thioflavin T binding clearly demonstrated that these core-variants undergo significant structural rearrangement from the native, monomeric ubiquitin fold. The two oligomeric species did not equilibrate over extended periods of time and displayed distinct secondary structures. The larger of the two species was found to possess structural features that are reminiscent of an emerging class of protein assemblies prone to beta-sheet-mediated aggregation. These results are significant as there are very few examples of extensive conformational or oligomerization switching brought about by single-point mutations in a stable protein-fold.  相似文献   

9.
The importance of various residues in the Streptomyces R61 penicillin-sensitive DD-peptidase has been assessed by site-directed mutagenesis. The replacement of the active Ser62 by a Cys residue yielded an inactive protein which was also unable to recognize penicillin. The activity of the Lys65----Arg mutant with the peptide and thiolester substrates was decreased 100-200-fold and the rate of penicillin inactivation was decreased 20,000-fold or more. The mutant thus behaved as a poor, but penicillin-resistant, DD-peptidase. The other studied mutations, the mutations Phe58----Leu, Tyr90----Asn, Thr101----Asn, Phe164----Ala, Asp225----Glu and Asp225----Asn had little influence on the catalytic and penicillin-binding properties. The Asp225 mutants did not exhibit an increased sensitivity to cefotaxime. The Phe164----Ala mutant was significantly more unstable than the wild-type enzyme.  相似文献   

10.
Fusidic acid (FA) is a bacteriostatic antibiotic that locks elongation factor G (EF-G) to the ribosome after GTP hydrolysis during elongation and ribosome recycling. The plasmid pUB101-encoded protein FusB causes FA resistance in clinical isolates of Staphylococcus aureus through an interaction with EF-G. Here, we report 1.6 and 2.3 Å crystal structures of FusB. We show that FusB is a two-domain protein lacking homology to known structures, where the N-terminal domain is a four-helix bundle and the C-terminal domain has an alpha/beta fold containing a C4 treble clef zinc finger motif and two loop regions with conserved basic residues. Using hybrid constructs between S. aureus EF-G that binds to FusB and Escherichia coli EF-G that does not, we show that the sequence determinants for FusB recognition reside in domain IV and involve the C-terminal helix of S. aureus EF-G. Further, using kinetic assays in a reconstituted translation system, we demonstrate that FusB can rescue FA inhibition of tRNA translocation as well as ribosome recycling. We propose that FusB rescues S. aureus from FA inhibition by preventing formation or facilitating dissociation of the FA-locked EF-G–ribosome complex.  相似文献   

11.
The impact of a specific region of the envelope protein E of tick-borne encephalitis (TBE) virus on the biology of this virus was investigated by a site-directed mutagenesis approach. The four amino acid residues that were analyzed in detail (E308 to E311) are located on the upper-lateral surface of domain III according to the X-ray structure of the TBE virus protein E and are part of an area that is considered to be a potential receptor binding determinant of flaviviruses. Mutants containing single amino acid substitutions, as well as combinations of mutations, were constructed and analyzed for their virulence in mice, growth properties in cultured cells, and genetic stability. The most significant attenuation in mice was achieved by mutagenesis of threonine 310. Combining this mutation with deletion mutations in the 3'-noncoding region yielded mutants that were highly attenuated. The biological effects of mutation Thr 310 to Lys, however, could be reversed to a large degree by a mutation at a neighboring position (Lys 311 to Glu) that arose spontaneously during infection of a mouse. Mutagenesis of the other positions provided evidence for the functional importance of residue 308 (Asp) and its charge interaction with residue 311 (Lys), whereas residue 309 could be altered or even deleted without any notable consequences. Deletion of residue 309 was accompanied by a spontaneous second-site mutation (Phe to Tyr) at position 332, which in the three-dimensional structure of protein E is spatially close to residue 309. The information obtained in this study is relevant for the development of specific attenuated flavivirus strains that may serve as future live vaccines.  相似文献   

12.
During tRNA translocation on the ribosome, an arc-like connection (ALC) is formed between the G' domain of elongation factor G (EF-G) and the L7/L12-stalk base of the large ribosomal subunit in the GDP state. To delineate the boundary of EF-G within the ALC, we tagged an amino acid residue near the tip of the G' domain of EF-G with undecagold, which was then visualized with three-dimensional cryo-electron microscopy (cryo-EM). Two distinct positions for the undecagold, observed in the GTP-state and GDP-state cryo-EM maps of the ribosome bound EF-G, allowed us to determine the movement of the labeled amino acid. Molecular analyses of the cryo-EM maps show: (1) that three structural components, the N-terminal domain of ribosomal protein L11, the C-terminal domain of ribosomal protein L7/L12, and the G' domain of EF-G, participate in formation of the ALC; and (2) that both EF-G and the ribosomal protein L7/L12 undergo large conformational changes to form the ALC.  相似文献   

13.
J Czworkowski  J Wang  T A Steitz    P B Moore 《The EMBO journal》1994,13(16):3661-3668
Elongation factor G (EF-G) catalyzes the translocation step of protein synthesis in bacteria, and like the other bacterial elongation factor, EF-Tu--whose structure is already known--it is a member of the GTPase superfamily. We have determined the crystal structure of EF-G--GDP from Thermus thermophilus. It is an elongated molecule whose large, N-terminal domain resembles the G domain of EF-Tu, except for a 90 residue insert, which covers a surface that is involved in nucleotide exchange in EF-Tu and other G proteins. The tertiary structures of the second domains of EF-G and EF-Tu are nearly identical, but the relative placement of the first two domains in EF-G--GDP resembles that seen in EF-Tu--GTP, not EF-Tu--GDP. The remaining three domains of EF-G look like RNA binding domains, and have no counterparts in EF-Tu.  相似文献   

14.
Escherichia coli cells contain abundant amounts of metabolically stable 4.5 S RNA. Consisting of 114 nucleotides, 4.5 S RNA is structurally homologous to mammalian 7 S RNA, and it plays an essential role in targeting proteins containing signal peptide to the secretory apparatus by forming an signal recognition-like particle with Ffh protein. It also binds independently to protein elongation factor G (EF-G) and functions in the translation process. This RNA contains a phylogenetically conserved RNA domain, the predicted secondary structure of which consists of a hairpin motif with two bulges. We examined the binding activity of mutants with systematic deletions to define the minimal functional interaction domain of 4.5 S RNA that interacts with EF-G. This domain consisted of 35-nucleotides extending from 36 to 70 nucleotides of mature 4.5 S RNA and contained two conserved bulges in which mutations of A47, A60, G61, C62, A63, and A67 diminished binding to EF-G, whereas those at A39, C40, C41, A42, G48, and G49 did not affect binding. These data suggested that the 10 nucleotides in 4.5 S RNA, which are conserved between 4.5 S RNA and 23 S rRNA, have a key role for EF-G binding. Based on the NMR-derived structure of mutant A47U, we further verified that substituting U at A47 causes striking structural changes and the loss of the symmetrical bulge. These results indicate the mechanism by which EF-G interacts with 4.5 S RNA and the importance of the bulge structure for EF-G binding.  相似文献   

15.
Ribosomal protein L7/12 is crucial for the function of elongation factor G (EF-G) on the ribosome. Here, we report the localization of a site in the C-terminal domain (CTD) of L7/12 that is critical for the interaction with EF-G. Single conserved surface amino acids were replaced in the CTD of L7/12. Whereas mutations in helices 5 and 6 had no effect, replacements of V66, I69, K70, and R73 in helix 4 increased the Michaelis constant (KM) of EF-G.GTP for the ribosome, suggesting an involvement of these residues in EF-G binding. The mutations did not appreciably affect rapid single-round GTP hydrolysis and had no effect on tRNA translocation on the ribosome. In contrast, the release of inorganic phosphate (Pi) from ribosome-bound EF-G.GDP.Pi was strongly inhibited and became rate-limiting for the turnover of EF-G. The control of Pi release by interactions between EF-G and L7/12 appears to be important for maintaining the conformational coupling between EF-G and the ribosome for translocation and for timing the dissociation of the factor from the ribosome.  相似文献   

16.
Bacterial flagellar switching between counterclockwise and clockwise directions is mediated by the coupling of the chemotactic system and the motor switch complex. The conformational changes of FliG are closely associated with this switching mechanism. We present two crystal structures of FliG(MC) from Helicobacter pylori, each showing distinct domain orientations from previously solved structures. A 180° rotation of the charged ridge-containing C-terminal subdomain FliG(Cα1-6) that is prompted by the rotational freedom of Met245 psi and Phe246 phi at the MFXF motif was revealed. Studies on the swarming and swimming behavior of Escherichia coli mutants further identified the importance of the ???MFXF??? motif and a highly conserved residue, Asn216, in motor switching. Additionally, multiple conformations of FliG(Cα1-6) were demonstrated by intramolecular cysteine crosslinking. The conformational flexibility of FliGc leads us to propose a model that accounts for the symmetrical torque generation process and for the dynamics of the motor.  相似文献   

17.
Li Y  Han X  Lai AL  Bushweller JH  Cafiso DS  Tamm LK 《Journal of virology》2005,79(18):12065-12076
Influenza virus hemagglutinin (HA)-mediated membrane fusion is initiated by a conformational change that releases a V-shaped hydrophobic fusion domain, the fusion peptide, into the lipid bilayer of the target membrane. The most N-terminal residue of this domain, a glycine, is highly conserved and is particularly critical for HA function; G1S and G1V mutant HAs cause hemifusion and abolish fusion, respectively. We have determined the atomic resolution structures of the G1S and G1V mutant fusion domains in membrane environments. G1S forms a V with a disrupted "glycine edge" on its N-terminal arm and G1V adopts a slightly tilted linear helical structure in membranes. Abolishment of the kink in G1V results in reduced hydrophobic penetration of the lipid bilayer and an increased propensity to form beta-structures at the membrane surface. These results underline the functional importance of the kink in the fusion peptide and suggest a structural role for the N-terminal glycine ridge in viral membrane fusion.  相似文献   

18.
The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.  相似文献   

19.
A simple in silico procedure is proposed with a view to predict the agonist or antagonist character of new, AMPA-type Glu receptor channel ligands. Based on the experimental binding domain structures, the orientation of a single Lys residue close to the ligand binding core was found to be diagnostic of ligand-induced conformational changes. Acting as a switch, the position of the Lys residue indicates the agonist or antagonist character of AMPA receptor ligands, known to bind to the receptor. Stability centre analysis substantiated the key role this switch might play in ligand-induced conformational changes.  相似文献   

20.
Most viral glycoproteins mediating membrane fusion adopt a metastable native conformation and undergo major conformational changes during fusion. We previously described a panel of compounds that specifically prevent fusion induced by measles virus (MV), most likely by interfering with conformational rearrangements of the MV fusion (F) protein. To further elucidate the basis of inhibition and better understand the mechanism of MV glycoprotein-mediated fusion, we generated and characterized resistant MV variants. Spontaneous mutations conferring drug resistance were confirmed in transient assays and in the context of recombinant virions and were in all cases located in the fusion protein. Several mutations emerged independently at F position 462, which is located in the C-terminal heptad repeat (HR-B) domain. In peptide competition assays, all HR-B mutants at residue 462 revealed reduced affinity for binding to the HR-A core complex compared to unmodified HR-B. Combining mutations at residue 462 with mutations in the distal F head region, which we had previously identified as mediating drug resistance, causes intracellular retention of the mutant proteins. The transport competence and activity of the mutants can be restored, however, by incubation at reduced temperature or in the presence of the inhibitory compounds, indicating that the F escape mutants have a reduced conformational stability and that the inhibitors stabilize a transport-competent conformation of the F trimer. The data support the conclusion that residues located in the head domain of the F trimer and the HR-B region contribute jointly to controlling F conformational stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号