首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A chimeric gene consisting of a bean (Phaseolus vulgaris L.) chalcone synthase (CHS) promoter fused to a bacterial chloramphenicol acetyltransferase (CAT) reporter gene was strongly expressed, and further induced by fungal elicitor, when electroporated into alfalfa (Medicago sativa L.) suspension cell protoplasts. Functional analysis of 5 deletions of the CHS promoter-CAT construct in these protoplasts indicated that the region between –326 and –130 contained both activator and silencer elements. Co-electroporation experiments confirmed that these cis-acting elements were binding sites for functionally active trans factors. In vitro DNase I footprinting revealed four potential binding sites for alfalfa suspension cell nuclear proteins between positions –326 and –130 of the CHS promoter. These sites mapped to regions shown to contain functional cis-acting elements on the basis of the deletion analysis. Three of these sites mapped to previously identified binding sites for bean nuclear proteins. Competition gel retardation analysis using oligonucleotide probes containing binding site sequences revealed sequence-specific binding of alfalfa nuclear proteins to an AT-rich element and a putative GT-1 factor consensus binding sequence. Our results define cis elements and their cognate trans factors functionally active in determining the quantitative expression of a defense response gene in a heterologous transient expression system.Abbreviations CAT chloramphenicol acetyltransferase - CHS chalcone synthase (EC 2.3.1.74) - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5)  相似文献   

3.
A 318 bp mannopine synthase 2 (mas2) promoter element from the T-DNA of Agrobacterium tumefaciens can direct wound-inducible and root-preferential expression of a linked uidA gene in transgenic tobacco plants. Wound inducibility is further enhanced by sucrose in the medium. Promoter deletion analysis indicated that the sucrose enhancement is conferred by a region extending from –318 to –213. DNase I footprinting indicated that an A/T-rich DNA sequence in this region is protected by tobacco nuclear factors. Regions extending from –103 to +66 and from –213 to –138 directed wound-inducibile expression of a linked uidA gene when placed downstream of a CaMV 35S enhancer or upstream of a truncated (–209) CaMV 35S promoter, respectively. DNase I footprinting analyses indicated that proteins from wounded tobacco leaves specifically bound to three contiguous motifs downstream of the mas2 TATA box. In addition to a common retarded band formed by the upstream wound-responsive element complexed with proteins from either wounded or unwounded tobacco leaves, two unique retarded bands were observed when this element was incubated with protein from wounded leaves. Methylation interference analysis additionally identified an unique motif composed of promoter elements and nuclear factors derived specifically from wounded tobacco leaves. We propose a model to describe the involvement of nuclear factors with mas2 promoter elements in wound-inducible gene expression.  相似文献   

4.
Plant secondary metabolites of the terpenoid indole alkaloid (TIA) class comprise several compounds with pharmaceutical applications. A key step in the TIA biosynthetic pathway is catalysed by the enzyme tryptophan decarboxylase (TDC), which channels the primary metabolite tryptophan into TIA metabolism. In Catharanthus roseus (Madagascar periwinkle), the Tdc gene is expressed throughout plant development. Moreover, Tdc gene expression is induced by external stress signals, such as fungal elicitor and UV light. In a previous study of Tdc promoter architecture in transgenic tobacco it was shown that the ?538 to ?112 region is a quantitative determinant for the expression level in different plant organs. Within this sequence one particular region (?160 to ?99) was identified as the major contributor to basal expression and another region (?99 to ?37) was shown to be required for induction by fungal elicitor. Here, the in vitro binding of nuclear factors to the ?572 to ?37 region is described. In extracts from tobacco and C. roseus, two binding activities were detected that could be identified as the previously described nuclear factors GT-1 and 3AF1, based on their mobility and binding characteristics. Both factors appeared to interact with multiple regions in the Tdc promoter. Mutagenesis of GT-1 binding sites in the Tdc promoter did not affect the basal or elicitor-induced expression levels. However, induction of the Tdc promoter constructs by UV light was significantly lower, thereby demonstrating a functional role for GT-1 in the induction of Tdc expression by UV light.  相似文献   

5.
Strictosidine synthase (STR) is a key enzyme in the biosynthesis of terpenoid indole alkaloids. This class of secondary metabolites harbours several pharmaceutically important compounds used, among other applications, in cancer treatment. Terpenoid indole alkaloid biosynthesis and expression of biosynthetic genes including Str1 is induced by fungal elicitors. To identify elicitor-responsive regulatory promoter elements and trans-acting factors, the single-copy Str1 gene was isolated from the subtropical plant species Catharanthus roseus (Madagascar periwinkle). Str1 upstream sequences conferred elicitor-responsive expression to the -glucuronidase (gusA) reporter gene in transgenic tobacco plants. Main enhancer sequences within the Str1 promoter region studied were shown to be located between –339 and –145. This region and two other regions of the promoter bound the tobacco nuclear protein factor GT-1. A G-box located around position –105 bound nuclear and cloned G-box-binding factors (GBFs). A mutation that knocked out GBF binding had no measurable effect on expression, which indicates that the G-box is not essential for the elicitor responsiveness of the Str1 promoter. No obvious homologies with promoter elements identified in other elicitor-responsive genes were observed, suggesting that the Str1 gene may depend on novel regulatory mechanisms.  相似文献   

6.
To understand molecular mechanisms underlying wound-induced expression of plant peroxidase genes, the promoter of a horseradish C2 peroxidase (prxC2) gene was analyzed. We had previously isolated a tobacco nuclear protein, Ntlim1, as a trans factor binding to a PAL-box motif of the prxC2 promoter; however, the function of the Ntlim1 trans factor and the PAL-box motif in wound-responsive expression of the prxC2 gene remains unclear. Here, we found that the prxC2 promoter without the intact PAL-box motif failed to direct a normal level of both the basal and the wound-induced expression of -glucuronidase (GUS) reporter gene in transgenic tobacco plants, indicating that the PAL-box motif functions as an essential cis element of the prxC2 promoter. We also found that antisense expression of Ntlim1 in transgenic plants carrying the prxC2 promoter::GUS chimeric construct decreased not only the level of the basal and the wound-induced expression of the GUSreporter gene but also the extent of wound inducibility of the prxC2 promoter itself. This result indicates that Ntlim1 is required for the basal level of prxC2 promoter activity as well as its up-regulation under wound stress. Moreover, consistent with the results obtained in planta, result from super-shift assay indicates that the Ntlim1 binds to the PAL-box motif independently of wound stress.  相似文献   

7.
Using a simple oligo selection procedure, we have previously identified a tobacco sequence-specific DNA-binding activity, TDBA12, that increases markedly during the tobacco mosaic virus (TMV)-induced hypersensitive response (HR). Based on the binding specificity and the two cDNA clones isolated, TDBA12 is related to a novel class of DNA-binding factors containing WRKY domains. In the present study, we report that TDBA12 could be induced not only by TMV infection but also by treatment with salicylic acid (SA) or its biologically active analogs capable of inducing pathogenesis-related (PR) genes and enhanced resistance. TDBA12 was sensitive to temperature and the protein dissociating agent sodium deoxycholate, suggesting that it may be a multimeric factor in which protein–protein interaction is important for the enhanced DNA-binding activity. Pre-treatment of nuclear extracts with alkaline phosphatase abolished TDBA12, suggesting that protein phosphorylation is important for its high DNA-binding activity. TDBA12 specifically recognized the elicitor response element of the tobacco class I basic chitinase gene promoter. The increase in the levels of TDBA12 following TMV infection or SA treatment preceded the induced expression of the tobacco chitinase gene. These results strongly suggest that certain WRKY DNA-binding proteins may be activated by enhanced protein phosphorylation and regulate inducible expression of defense-related genes during pathogen- and SA-induced plant defense responses.  相似文献   

8.
9.
10.
11.
The binding of nuclear factor on the promoter region of the regucalcin gene and the expression of regucalcin in the kidney cortex of rats was investigated. Nuclear extracts from kidney cortex were used for oligonucleotide competition gel mobility shift assay. An oligonucleotide between position –523 and –506 in the 5-flanking region of the rat regucalcin gene, which contains a nuclear factor I (NF1) consensus motif TTGGC(N)6CC, competed with the probe for the binding of the nuclear protein from kidney cortex. The mutation of TTGGC in the consensus sequence caused an inhibition of the binding of nuclear factors. The binding of nuclear factor on the 5-flanking region was clearly reduced in the kidney cortex obtained at 1, 2, and 3 days after a single intraperitoneal administration of cisplatin (1.0 mg/100 g body wt) to rats. Moreover, cisplatin administration caused a remarkable decrease in regucalcin mRNA levels and regucalcin concentration in the kidney cortex. Also, serum regucalcin concentration was significantly decreased by cisplatin administration. Meanwhile, serum urea nitrogen concentration was markedly elevated by cisplatin administration. The present study demonstrates that the specific nuclear factor binds to the NF1-like sequence in the promotor region of regucalcin gene in the kidney cortex of rats, and that the nuclear factor binding and regucalcin expression are suppressed by cisplatin administration.  相似文献   

12.
13.
14.
15.
16.
Plant secondary metabolites of the terpenoid indole alkaloid (TIA) class comprise several compounds with pharmaceutical applications. A key step in the TIA biosynthetic pathway is catalysed by the enzyme tryptophan decarboxylase (TDC), which channels the primary metabolite tryptophan into TIA metabolism. In Catharanthus roseus (Madagascar periwinkle), the Tdc gene is expressed throughout plant development. Moreover, Tdc gene expression is induced by external stress signals, such as fungal elicitor and UV light. In a previous study of Tdc promoter architecture in transgenic tobacco it was shown that the −538 to −112 region is a quantitative determinant for the expression level in different plant organs. Within this sequence one particular region (−160 to −99) was identified as the major contributor to basal expression and another region (−99 to −37) was shown to be required for induction by fungal elicitor. Here, the in vitro binding of nuclear factors to the −572 to −37 region is described. In extracts from tobacco and C. roseus, two binding activities were detected that could be identified as the previously described nuclear factors GT-1 and 3AF1, based on their mobility and binding characteristics. Both factors appeared to interact with multiple regions in the Tdc promoter. Mutagenesis of GT-1 binding sites in the Tdc promoter did not affect the basal or elicitor-induced expression levels. However, induction of the Tdc promoter constructs by UV light was significantly lower, thereby demonstrating a functional role for GT-1 in the induction of Tdc expression by UV light. Received: 2 February 1998 / Accepted: 5 March 1999  相似文献   

17.
Summary The class I chitinases are vacuolar proteins implicated in the defense of plants against pathogens. Leaves of transgenic Nicotiana sylvestris plants homozygous for a chimeric tobacco (Nicotiana tabacum) chitinase gene with Cauliflower Mosaic Virus (CaMV) 35S RNA expression signals usually accumulate high levels of chitinase relative to comparable leaves of non-transformed plants. Unexpectedly, some transgenic plants accumulated lower levels of chitinase than nontransformed plants. We call this phenomenon silencing. The incidence of silencing depends on the early rearing conditions of the plants. When grown to maturity in a greenhouse, 25% of plants raised as seedlings in closed culture vessels were of the silent type; none of the plants raised from seed in a greenhouse showed this phenotype. Silencing is also developmentally regulated. Plants showed three patterns of chitinase expression: uniformly high levels of expression in different leaves, uniformly low levels of expression in different leaves, and position-dependent silencing in which expression was uniform within individual leaves but varied in different leaves on the same plant. Heritability of the silent phenotype was examined in plants homozygous for the transgene. Some direct descendants exhibited a high-silent-high sequence of activity phenotypes in successive sexual generations, which cannot be explained by simple Mendelian inheritance. Taken together, the results indicate that silencing results from stable but potentially reversible states of gene expression that are not meiotically transmitted. Gene-specific measurements of chitinase and chitinase mRNA showed that silencing results from co-suppression, i.e. the inactivation of both host and transgene expression in trans. The silent state was not correlated with cytosine methylation of the transgene at the five restriction sites investigated.These authors have both made an equal contribution to this work  相似文献   

18.
Osmotin is a small (24 kDa), basic, pathogenesis-related protein, that accumulates during adaptation of tobacco (Nicotiana tabacum) cells to osmotic stress. There are more than 10 inducers that activate the osmotin gene in various plant tissues. The osmotin promoter contains several sequences bearing a high degree of similarity to ABRE, as-1 and E-8 cis element sequences. Gel retardation studies indicated the presence of at least two regions in the osmotin promoter that show specific interactions with nuclear factors isolated from cultured cells or leaves. The abundance of these binding factors increased in response to salt, ABA and ethylene. Nuclear factors protected a 35 bp sequence of the promoter from DNase I digestion. Different 5 deletions of the osmotin promoter cloned into a promoter-less GUS-NOS plasmid (pBI 201) were used in transient expression studies with a Biolistic gun. The transient expression studies revealed the presence of three distinct regions in the osmotin promoter. The promoter sequence from –108 to –248 bp is absolutely required for reporter gene activity, followed by a long stretch (up to –1052) of enhancer-like sequence and then a sequence upstream of –1052, which appears to contain negative elements. The responses to ABA, ethylene, salt, desiccation and wounding appear to be associated with the –248 bp sequence of the promoter. This region also contains a putative ABRE (CACTGTG) core element. Activation of the osmotin gene by various inducers is discussed in view of antifungal activity of the osmotin protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号