首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
【目的】研究Acetobacter pasteurianus CICIM B7003对醋酸发酵形成的酸胁迫环境在细胞形态、生理、代谢方面的响应,初步提出巴氏醋杆菌的动态耐酸机制模型,为高酸度高强度液态深层醋酸发酵提供理论帮助。【方法】在9 L自吸式发酵罐中用A.pasteurianus CICIM B7003发酵醋酸,选取不同生长阶段细胞检测其荚膜多糖含量、膜不饱和脂肪酸含量、耐酸基因转录水平、乙醇呼吸链酶和ATP酶活性,研究醋酸菌形态、生理和代谢随醋酸积累的变化。【结果】醋酸的存在能减少细胞分泌荚膜多糖,发酵中多糖占细胞干重百分比由最初2.5%下降到0.89%;随发酵进行细胞膜不饱和脂肪酸占膜总脂肪酸含量显著提高,致使细胞膜流动性增加;耐酸基因相对转录水平显著提高而提升了细胞对酸性环境的抗性;乙醇呼吸链酶和ATP酶活性随醋酸积累也显著提高,为细胞提供足够的能量以满足耐酸机制对能量的需求。【结论】初步确定A.pasteurianus CICIM B7003主要依靠改变细胞膜脂肪酸组分、激活耐酸基因转录、增强乙醇呼吸链活力及快速产能等机制的协同作用,实现对酸胁迫的制衡。  相似文献   

2.
摘要:【目的】研究Acetobacter pasteurianus CICIM B7003 对醋酸发酵形成的酸胁迫环境在细胞形态、生理、代谢方面的响应,初步提出巴氏醋杆菌的动态耐酸机制模型,为高酸度高强度液态深层醋酸发酵提供理论帮助。【方法】在9 L自吸式发酵罐中用A.pasteurianus CICIM B7003发酵醋酸,选取不同生长阶段细胞检测其荚膜多糖含量、膜不饱和脂肪酸含量、耐酸基因转录水平、乙醇呼吸链酶和ATP酶活性,研究醋酸菌形态、生理和代谢随醋酸积累的变化。【结果】醋酸的存在能减少细胞分泌荚膜多糖,发酵中多糖占细胞干重百分比由最初2.5%下降到0.89%;随发酵进行细胞膜不饱和脂肪酸占膜总脂肪酸含量显著提高,致使细胞膜流动性增加;耐酸基因相对转录水平显著提高而提升了细胞对酸性环境的抗性;乙醇呼吸链酶和ATP 酶活性随醋酸积累也显著提高,为细胞提供足够的能量以满足耐酸机制对能量的需求。【结论】初步确定A.pasteurianus CICIM B7003主要依靠改变细胞膜脂肪酸组分、激活耐酸基因转录、增强乙醇呼吸链活力及快速产能等机制的协同作用,实现对酸胁迫的制衡。  相似文献   

3.
醋杆菌耐酸性能是制约高酸度食醋发酵的关键因素,为更好地探究醋杆菌耐酸调控机制,笔者选取巴氏醋杆菌为主要研究对象,采用指示菌生物检测和仪器分析方法研究了其群体感应特性。同时,结合生物信息学分析,在基因组水平揭示醋杆菌中群体感应的分布与遗传进化。结果表明,巴氏醋杆菌Ab3和CICC 20001不能合成AHLs类和AI-2信号分子。AHLs合成酶Lux I和受体蛋白LuxR的编码基因在巴氏醋杆菌遗传进化过程中普遍丢失,同时也未在其基因组中发现AI-2合成和响应体系中关键蛋白的编码序列。相比于巴氏醋杆菌,在其他菌种(如A. malorum和A. tropicalis)中同样不存在AI-2合成体系,但拥有完整的AHLs合成和感受体系,表明这些菌株中群体感应仍发挥重要的调控作用。群体感应系统在醋杆菌中的分布与生存环境和基因组稳定性密切相关,其中分离于自然环境和宿主肠道内的菌株拥有更多完整的群体感应体系。  相似文献   

4.
日本中野醋店已确立了食醋商业化生产所用的醋化醋杆菌(醋酸菌)(Acetobacter acefi)的有用基因自体克隆的基础技术。利用这项成果,就可使由限制性酶切断的DNA片断连接到载体上使其克隆化,使从得到的许多克隆通过散弹枪法(shot gun)克隆找出目标基因的技术能在醋酸菌中进行,从而可加快醋酸菌有用基因的克隆化。该公司正利用基因重组技术从事这种菌的育种工作:能降低醋酸发酵的冷却成本的高温发酵醋酸菌,有利于业务用食醋的高酸度发酵醋酸菌,提高醋酸发酵生产速度的醋酸菌等。  相似文献   

5.
据日本《日经产业新闻》报道,日本最大的食醋工业公司中,醋店决定应用生物工程技术改良醋酸菌,并于本年七月向科学技术厅申请了对醋酸菌的重组基因实验。该企业改良醋酸菌的目的是:①使优良菌种具有在高温下的耐性,减少发酵过程中的冷却工艺,从而而节约能源;②能在酸度高的条件下发酵,或是加快发酵速度以提高生产;③改变食醋组成成分提高味感质量。  相似文献   

6.
据日本《日经产业新闻》报道,日本最大的食醋工业公司中(林土)醋店决定应用生物工程技术改良醋酸菌,并于本年七月向科学技术厅申请了对醋酸菌的重组基因实验。 该企业改良醋酸菌的目的是:①使优良菌种具有在高温下的耐性,减少发酵过程中的冷却工艺,从而节约能源;②能在酸度高的条件下发醋,或是加快发酵速度以提高生产;③改变食醋组成成份,提高味感质量。  相似文献   

7.
嗜酸菌耐酸pH平衡机制及潜在应用   总被引:1,自引:0,他引:1  
嗜酸菌是一类可以在极端酸性环境下生存的微生物,在生物整治以及耐热耐酸酶的提取等领域发挥着重要作用。一些嗜中性工程菌株在发酵过程中经常遇到自身环境酸化的问题,嗜酸菌独特的耐酸能力及其耐酸模块为构建耐酸能力强的嗜中性工程菌株提供了思路。因此,从细胞膜的稳定性及低渗透性,耐酸相关的能量代谢,生物大分子的修复以及胞内缓冲作用等方面对嗜酸菌的耐酸机制进行深入探讨,并展望了嗜酸菌在耐酸工程菌株合成生物学领域的作用。  相似文献   

8.
醋酸菌是食醋酿造过程中的关键菌种,性能优良的菌种对于产品品质的提升意义重大。以分离自番茄表面的产醋酸菌为研究对象,通过生理生化指标鉴定、16S rRNA编码基因比对及系统发育树构建等方法对其种类进行鉴定,并通过单因素实验、正交实验对鉴定为醋酸菌的菌株进行培养条件优化。结果表明,所分离的3株醋酸生产菌中,BQ-1被鉴定为醋酸杆菌属(Acetobacteraceae),在以酵母粉为主要氮源,蔗糖为主要碳源的培养基中,其最高产酸量为1823 g·L-1。由于该菌株在番茄表面具有很强的生长能力,因此有望应用于番茄果醋的酿造。  相似文献   

9.
目的从甘肃民间地产传统酿造食醋醋醅中分离筛选出一株高产酸醋酸菌并加以鉴定,为醋酸发酵提供新的菌种资源。方法通过透明圈法和产醋酸定性试验等,对其中的醋酸菌进行分离,然后进行产酸量测定比较。结果最终筛选出一株产酸量高且产量稳定的菌株A3,其产酸量为3.6468 g/100 m L。结论根据菌株A3形态观察,再通过一系列生理生化试验,并结合16S rRNA分子生物学鉴定手段,最终鉴定其为醋酸杆菌属中的Acetobacter pomorum。  相似文献   

10.
巴氏醋杆菌高酸度醋发酵过程的能量代谢分析   总被引:2,自引:0,他引:2  
【目的】初步分析了Acetobacter pasteurianus CICIM B7003-02在醋酸发酵过程中的能量代谢状况, 通过强化细胞能量代谢水平以提升菌株高酸发酵的产酸强度。【方法】探明A. pasteurianus CICIM B7003-02在高酸度醋发酵的不同阶段中三羧酸循环底物含量、乙醇呼吸链酶活及能量代谢酶基因的转录水平等代谢特点, 分析用于醋酸发酵的产能代谢途径及其作用。【结果】发现A. pasteurianus CICIM B7003-02在醋酸发酵初期, 主要通过苹果酸/琥珀酸回补偶联有氧呼吸途径产能。进入醋酸快速积累阶段, 乙醇呼吸链为主要供能代谢途径。发酵后期苹果酸/琥珀酸回补途径配合乙醇呼吸链供能。基于上述研究, 采取添加琥珀酸和苹果酸强化细胞产能, 促进高酸度醋发酵强度。【结论】能量供给影响醋杆菌耐酸能力和醋酸生产能力。确定乙醇呼吸链为醋酸发酵的主要供能系统。强化细胞产能手段可达到提高醋酸发酵强度的目的。  相似文献   

11.
《Process Biochemistry》2014,49(10):1571-1579
Strictly aerobic acetic acid bacteria (AAB) have a long history of use in fermentation processes, and the conversion of ethanol to acetic acid for the production of vinegar is the most well-known application.At the industrial scale, vinegar is mainly produced by submerged fermentation, which refers to an aerobic process in which the ethanol in beverages such as spirits, wine or cider is oxidized to acetic acid by AAB. Submerged fermentation requires robust AAB strains that are able to oxidize ethanol under selective conditions to produce high-titer acetic acid. Currently submerged fermentation is conducted by unselected AAB cultures, which are derived from previous acetification stocks and maintained by repeated cultivation cycles.In this work, submerged fermentation for vinegar production is discussed with regard to advances in process optimization and parameters (oxygen availability, acetic acid content and temperature) that influence AAB activity. Furthermore, the potential impact arising from the use of selected AAB is described.Overcoming the acetification constraints is a main goal in order to facilitate innovation in submerged fermentation and to create new industry-challenging perspectives.  相似文献   

12.
夏凯  梁新乐  李余动 《遗传》2015,37(12):1242-1250
CRISPR (Clustered regularly interspaced short palindromic repeats)是近几年发现的一种广泛存在于细菌和古菌中,能够应对外源DNA干扰(噬菌体、病毒、质粒等),并提供免疫机制的重复序列结构。CRISPR系统通常由同向重复序列、前导序列、间隔序列和CRISPR相关蛋白组成。本研究以醋酸发酵中常见3个属醋杆菌属(Acetobacter)、葡糖醋杆菌属(Gluconacetobacter)和葡糖杆菌属(Gluconobacter)的48个菌株为研究对象,通过其基因组上CRISPR相关基因序列的生物信息学分析,探索CRISPR位点在醋酸菌中的多态性及其进化模式。结果表明48株醋酸菌中有32株存在CRISPR结构,大部分CRISPR-Cas结构属于type I-E和type I-C类型。除了葡糖杆菌属外,葡糖醋杆菌属和醋杆菌属中的部分菌株含有II类的CRISPR-Cas系统结构(CRISPR-Cas9)。来自不同属菌株的CRISPR结构中重复序列具有较强的保守性,而且部分菌株CRISPR结构中的前导序列具有保守的motif (与基因的转录调控有关)及启动子序列。进化树分析表明cas1适合用于醋酸菌株的分类,而不同菌株间cas1基因的进化与重复序列的保守性相关,预示它们可能受相似的功能选择压力。此外,间隔序列的数量与噬菌体数量及插入序列(Insertion sequence, IS)数量有正相关的趋势,说明醋酸菌在进化过程中可能正不断受新的外源DNA入侵。醋酸菌中CRISPR结构位点的分析,为进一步研究不同醋酸菌株对醋酸胁迫耐受性差异及其基因组稳定性的分子机制奠定了基础。  相似文献   

13.
The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other products of biotransformations by AAB or their enzymes include 2-keto-L-gulonic acid, which is used for the production of vitamin C; D-tagatose, which is used as a bulking agent in food and a noncalorific sweetener; and shikimate, which is a key intermediate for a large number of antibiotics. Recently, for the first time, a pathogenic acetic acid bacterium was described, representing the newest and tenth genus of AAB.  相似文献   

14.
Biotechnological applications of acetic acid bacteria   总被引:2,自引:0,他引:2  
The acetic acid bacteria (AAB) have important roles in food and beverage production, as well as in the bioproduction of industrial chemicals. In recent years, there have been major advances in understanding their taxonomy, molecular biology, and physiology, and in methods for their isolation and identification. AAB are obligate aerobes that oxidize sugars, sugar alcohols, and ethanol with the production of acetic acid as the major end product. This special type of metabolism differentiates them from all other bacteria. Recently, the AAB taxonomy has been strongly rearranged as new techniques using 16S rRNA sequence analysis have been introduced. Currently, the AAB are classified in ten genera in the family Acetobacteriaceae. AAB can not only play a positive role in the production of selected foods and beverages, but they can also spoil other foods and beverages. AAB occur in sugar- and alcohol-enriched environments. The difficulty of cultivation of AAB on semisolid media in the past resulted in poor knowledge of the species present in industrial processes. The first step of acetic acid production is the conversion of ethanol from a carbohydrate carried out by yeasts, and the second step is the oxidation of ethanol to acetic acid carried out by AAB. Vinegar is traditionally the product of acetous fermentation of natural alcoholic substrates. Depending on the substrate, vinegars can be classified as fruit, starch, or spirit substrate vinegars. Although a variety of bacteria can produce acetic acid, mostly members of Acetobacter, Gluconacetobacter, and Gluconobacter are used commercially. Industrial vinegar manufacturing processes fall into three main categories: slow processes, quick processes, and submerged processes. AAB also play an important role in cocoa production, which represents a significant means of income for some countries. Microbial cellulose, produced by AAB, possesses some excellent physical properties and has potential for many applications. Other products of biotransformations by AAB or their enzymes include 2-keto-L-gulonic acid, which is used for the production of vitamin C; D-tagatose, which is used as a bulking agent in food and a noncalorific sweetener; and shikimate, which is a key intermediate for a large number of antibiotics. Recently, for the first time, a pathogenic acetic acid bacterium was described, representing the newest and tenth genus of AAB.  相似文献   

15.
Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species.  相似文献   

16.
【背景】耐受乙酸的乳酸菌是传统谷物醋醋酸发酵过程中产生乳酸及其风味衍生物的重要功能微生物。【目的】从镇江香醋醋醅中分离鉴定具有耐乙酸特性的乳酸菌,并评价不同条件下该菌株的产乳酸能力。【方法】利用4%(体积比)乙酸含量的MRS培养基分离耐乙酸乳酸菌;对其进行16S rRNA基因鉴定、基因组测序、形态观察以及生理生化特性研究;考察不同乙酸浓度、葡萄糖浓度、发酵温度和时间对菌株产乳酸能力的影响。【结果】分离得到一株可耐受6%乙酸的乳杆菌Lactobacillus sp. JN500903;在厌氧静置、接种量5%、乙酸浓度5%、葡萄糖浓度40 g/L、发酵温度37°C、发酵时间10 d条件下,该菌株乳酸产量为16.1 g/L。【结论】乳杆菌JN500903能够耐受6%乙酸浓度,具有在酸性环境下合成乳酸的能力,有一定的应用潜力。  相似文献   

17.
Acetic acid bacteria (AAB) are known as a vinegar producer on account of their ability to accumulate a high concentration of acetic acid due to oxidative fermentation linking the ethanol oxidation respiratory chain. Reactions in oxidative fermentation cause poor growth because a large amount of the carbon source is oxidized incompletely and the harmful oxidized products are accumulated almost stoichiometrically in the culture medium during growth, but a newly identified AAB, Asaia, has shown unusual properties, including scanty acetic acid production and rapid growth, as compared with known AAB as Acetobacter, Gluconobacter, and Gluconacetobacter. To understand these unique properties of Asaia in more detail, the respiratory chain and energetics of this strain were investigated. It was found that Asaia lacks quinoprotein alcohol dehydrogenase, but has other sugar and sugar alcohol-oxidizing enzymes specific to the respiratory chain of Gluconobacter, especially quinoprotein glycerol dehydrogenase. It was also found that Asaia has a cyanide-sensitive cytochrome bo(3)-type ubiquinol oxidase as sole terminal oxidase in the respiratory chain, and that it exhibits a higher H(+)/O ratio.  相似文献   

18.
Seeking high strength vinegar fermentation by acetic acid bacteria (AAB) is still the mission of vinegar producers. AAB alcohol respiratory chain, located on intracellular membrane, is directly responsible for vinegar fermentation. In the semi-continuous vinegar fermentation by Acetobacter pasteurianus CICIM B7003, acetification rate showed positive correlation with the activity of the enzymes in alcohol respiratory chain. Aiming at achieving high strength fermentation process, a series of trials were designed to raise the activity of AAB alcohol respiratory chain. Finally, acetification was enhanced by adding some precursors (ferrous ions and β-hydroxybenzoic acid) of alcohol respiration associated factors and increasing aeration rate (0.14 vvm). As final result, average acetification rate has been raised to 2.29 ± 0.02 g/L/h, which was 28.7% higher than the original level. Simultaneously, it was found that the oxidization of alcohol into acetic acid in AAB cells was improved by well balancing of three factors: enzyme activity in alcohol respiratory chain, precursor of ubiquinone biosynthesis, and aeration rate.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号