首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the current study we investigated the effect of the branched-chain alpha-keto acids (BCKA) co-ketoisocaproic (KIC), alpha-keto-beta-methylvaleric (KMV), and alpha-ketoisovaleric (KIV) acids, which accumulate in maple syrup urine disease (MSUD), on the in vitro uptake of [3H]glutamate by cerebral cortical slices from rats aged 9, 21, and 60 days of life. We initially observed that glutamate uptake into cerebral cortex of 9- and 21-day-old rats was significantly higher, as compared to that of 60-day-old rats. Furthermore, KIC inhibited this uptake by tissue slices at all ages studied, whereas KMV and KIV produced the same effect only in cortical slices of 21- and 60-day-old rats. Kinetic assays showed that KIC significantly inhibited glutamate uptake in the presence of high glutamate concentrations (50 microM and greater). We also verified that the reduction of glutamate uptake was not due to cellular death, as evidenced by tetrazolium salt and lactate dehydrogenase viability tests of cortical slices in the presence of the BCKA. It is therefore presumed that the reduced glutamate uptake caused by the BCKA accumulating in MSUD may lead to higher extracellular glutamate levels and potentially to excitotoxicity, which may contribute to the neurological dysfunction of the affected individuals.  相似文献   

2.
We have previously provided evidence for ATP-dependent glutamate uptake into synaptic vesicles, and, based upon the unique properties of the vesicular uptake system, we have proposed that the vesicular glutamate translocator plays a crucial role in selecting glutamate for neurotransmission. In this study, we have solubilized the vesicular glutamate uptake system, proposed to consist of at least a glutamate translocator and a proton pump Mg-ATPase, from rat brain synaptic vesicles, and reconstituted the functional ATP-dependent glutamate uptake system into liposomes. The glutamate uptake in the reconstituted system is dependent upon ATP, markedly potentiated by low millimolar concentrations of chloride and inhibited by agents known to dissipate electrochemical proton gradients. Moreover, it exhibited low affinity for glutamate (Km = 2 mM), yet high specificity for glutamate; thus, it did not recognize aspartate and other agents known to interact with glutamate receptors. These properties are indistinguishable from those observed in intact synaptic vesicles. The solubilized functional components of the glutamate uptake system, alone or as a complex, have been estimated to have a Stokes radius in the range of 69 to 84 A. The reconstitution experiments described here provide a functional assay for the solubilized vesicular glutamate uptake system and represent an initial step towards the purification of the glutamate translocator.  相似文献   

3.
Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, is transported into bovine synaptic vesicles in a manner that is ATP dependent and requires a vesicular electrochemical proton gradient. We studied the electrical and chemical elements of this driving force and evaluated the effects of chloride on transport. Increasing concentrations of Cl- were found to increase the steady-state ATP-dependent vesicular pH gradient (delta pH) and were found to concomitantly decrease the vesicular membrane potential (delta psi). Low millimolar chloride concentrations, which cause 3-6-fold stimulation of vesicular glutamate uptake, caused small but measurable increases in delta pH and decreases in delta psi, when compared to control vesicles in the absence of chloride. Nigericin in potassium buffers was used to alter the relative proportions of delta pH and delta psi. Compared to controls, at all chloride concentrations tested, nigericin virtually abolished delta pH and increased the vesicle interior positive delta psi. Concomitantly, nigericin increased ATP-dependent glutamate uptake in 0-1 mM chloride but decreased glutamate uptake in 4 mM (45%), 20 mM (80%), and 140 mM (75%) Cl- (where delta pH in the absence of nigericin was large). These findings suggest that either delta psi, delta pH, or a combination can drive glutamate uptake, but to different degrees. In the presence of 4 mM Cl-, where uptake is optimal, both delta psi and delta pH contribute to the driving force for uptake. When the extravesicular pH was increased from 7.4 to 8.0, more Cl- was required to stimulate vesicular glutamate uptake. In the absence of Cl-, as extravesicular pH was lowered to 6.8, uptake was over 3-fold greater than it was at pH 7.4. As extravesicular pH was reduced from 8.0 toward 6.8, less Cl- was required for maximal stimulation. Decreasing the extravesicular pH from 8.0 to 6.8 in the absence of Cl- significantly increased glutamate uptake activity, even though proton-pumping ATPase activity actually decreased about 45% under identical conditions. In the absence of chloride, nigericin increased glutamate uptake at all the pH values tested except pH 8.0. Glutamate uptake at pH 6.8 in the presence of nigericin was over 6-fold greater than uptake at pH 7.4 in the absence of nigericin. We conclude from these experiments that optimal ATP-dependent glutamate uptake requires a large delta psi and a small delta pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The dependence of glutamate uptake on ATP-generated proton electrochemical potential was studied in a highly purified preparation of synaptic vesicles from rat brain. At low chloride concentration (4 mM), the proton pump present in synaptic vesicles generated a large membrane potential (inside-positive), associated with only minor acidification. Under these conditions, the rate of L-[3H]glutamate uptake was maximal. In addition, L-glutamate induced acidification of the vesicle interior. D-Glutamate produced only 40% of the effect, and L-aspartate or gamma-aminobutyric acid produced less than 5%. The initial rate of glutamate-induced acidification increased with increasing glutamate concentration. It was saturable and showed first-order kinetics (KM = 0.32 mM). Correspondingly, L-glutamate induced a small reduction in the membrane potential. The rate of ATP hydrolysis was unaffected. In comparison, glutamate had no effect on acidification or membrane potential in resealed membranes of chromaffin granules. At high chloride concentration (150 mM), the vesicular proton pump generated a large pH difference, associated with a small change in membrane potential. Under these conditions, uptake of L-[3H]glutamate by synaptic vesicles was low. For reconstitution, vesicle proteins were solubilized with the detergent sodium cholate, supplemented with brain phospholipids, and incorporated into liposomes. Proton pump and glutamate uptake activities of the proteoliposomes showed properties similar to those of intact vesicles indicating that the carrier was reconstituted in a functionally active form. It is concluded that glutamate uptake by synaptic vesicles is dependent on the membrane potential and that all components required for uptake are integral parts of the vesicle membrane.  相似文献   

5.
Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a deficiency in branched chain alpha-keto acid dehydrogenase that can result in neurodegenerative sequelae in human infants. In the present study, increased concentrations of MSUD metabolites, in particular alpha-keto isocaproic acid, specifically induced apoptosis in glial and neuronal cells in culture. Apoptosis was associated with a reduction in cell respiration but without impairment of respiratory chain function, without early changes in mitochondrial membrane potential and without cytochrome c release into the cytosol. Significantly, alpha-keto isocaproic acid also triggered neuronal apoptosis in vivo after intracerebral injection into the developing rat brain. These findings suggest that MSUD neurodegeneration may result, at least in part, from an accumulation of branched chain amino acids and their alpha-keto acid derivatives that trigger apoptosis through a cytochrome c-independent pathway.  相似文献   

6.
Neurological dysfunction is a common finding in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly known. In the present study, we investigated the effect of the in vitro effect of the branched chain alpha-keto acids (BCKA) accumulating in MSUD on some parameters of energy metabolism in cerebral cortex of rats. [14CO(2)] production from [14C] acetate, glucose uptake and lactate release from glucose were evaluated by incubating cortical prisms from 30-day-old rats in Krebs-Ringer bicarbonate buffer, pH 7.4, in the absence (controls) or presence of 1-5 mM of alpha-ketoisocaproic acid (KIC), alpha-keto-beta-methylvaleric acid (KMV) or alpha-ketoisovaleric acid (KIV). All keto acids significantly reduced 14CO(2) production by around 40%, in contrast to lactate release and glucose utilization, which were significantly increased by the metabolites by around 42% in cortical prisms. Furthermore, the activity of the respiratory chain complex I-III was significantly inhibited by 60%, whereas the other activities of the electron transport chain, namely complexes II, II-III, III and IV, as well as succinate dehydrogenase were not affected by the keto acids. The results indicate that the major metabolites accumulating in MSUD compromise brain energy metabolism by blocking the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.  相似文献   

7.
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by glutaryl-CoA dehydrogenase deficiency, which leads to accumulation in body fluids and in brain of predominantly glutaric acid (GA), and to a lesser extent of 3-hydroxyglutaric and glutaconic acids. Neurological presentation is common in patients with GA I. Although the mechanisms underlying brain damage in this disorder are not yet well established, there is growing evidence that excitotoxicity may play a central role in the neuropathogenesis of this disease. In the present study, preparations of synaptosomes, synaptic plasma membranes and synaptic vesicles, as well as cultured astrocytes from rat forebrain were exposed to various concentrations of GA for the determination of the basal and potassium-induced release of [(3)H]glutamate by synaptosomes, Na(+)-independent glutamate binding to synaptic membranes and vesicular glutamate uptake and Na(+)-dependent glutamate uptake into astrocytes, respectively. GA (1-100 nM) significantly stimulated [(3)H]glutamate binding to brain plasma membranes (40-70%) in the absence of extracellular Na(+) concentrations, reflecting glutamate binding to receptors. Furthermore, this stimulatory effect was totally abolished by the metabotropic glutamate ligands DHPG, DCG-IV and l-AP4, attenuated by the ionotropic non-NMDA glutamate receptor agonist AMPA and had no interference of the NMDA receptor antagonist MK-801. Moreover, [(3)H]glutamate uptake into synaptic vesicles was inhibited by approximately 50% by 10 and 100 nM GA and Na(+)-dependent [(3)H]glutamate uptake by astrocytes was significantly increased (up to 50%) in a dose-dependent manner (maximal stimulation at 100 microM GA). In contrast, synaptosomal glutamate release was not affected by the acid at concentrations as high as 1 mM. These results indicate that the inhibition of glutamate uptake into synaptic vesicles by low concentrations GA may result in elevated concentrations of the excitatory neurotransmitter in the cytosol and the stimulatory effect of this organic acid on glutamate binding may potentially cause excitotoxicity to neural cells. Finally, taken together these results and previous findings showing that GA markedly decreases synaptosomal glutamate uptake, it is possible that the stimulatory effect of GA on astrocyte glutamate uptake might indicate that astrocytes may protect neurons from excitotoxic damage caused by GA by increasing glutamate uptake and therefore reducing the concentration of this excitatory neurotransmitter in the synaptic cleft.  相似文献   

8.
Glutamate uptake into synaptic vesicles is driven by a proton electrochemical gradient generated by a vacuolar H(+)-ATPase and stimulated by physiological concentrations of chloride. This uptake plays an important role in glutamatergic transmission. We show here that vesicular glutamate uptake is selectively inhibited by guanine derivatives, in a time- and concentration-dependent manner. Guanosine, GMP, GDP, guanosine-5'-O-2-thiodiphosphate, GTP, or 5'-guanylylimidodiphosphate (GppNHp) inhibited glutamate uptake in 1.5 and 3 min incubations, however, when incubating for 10 min, only GTP or GppNHp displayed such inhibition. By increasing ATP concentrations, the inhibitory effect of GTP was no longer observed, but GppNHp still inhibited glutamate uptake. In the absence of ATP, vesicular ATPase can hydrolyze GTP in order to drive glutamate uptake. However, 5mM GppNHp inhibited ATP hydrolysis by synaptic vesicle preparations. GTP or GppNHp decreased the proton electrochemical gradient, whereas the other guanine derivatives did not. Glutamate saturation curves were assayed in order to evaluate the specificity of inhibition of the vesicular glutamate carrier by the guanine derivatives. The maximum velocity of the initial rate of glutamate uptake was decreased by all guanine derivatives. These results indicate that, although GppNHp can inhibit ATPase activity, guanine derivatives are more likely to be acting through interaction with vesicular glutamate carrier.  相似文献   

9.
10.
—The effects of the amino acids (phenylalanine, valine, leucine and isoleucine) which accumulate in phenylketonuria (PKU) and maple syrup urine disease (MSUD), and their analogue α-keto acids (phenylpyruvate, α-keto isovalerate, α-keto isocaproate, α-keto-β-Me valerate) have been studied on rat brain mitochondrial respiration. Both phenylpyruvate and α-keto isocaproate specifically inhibited the oxidation of pyruvate plus malate and β-hydroxybutyrate plus malate by rat brain mitochondria in the presence of ADP. However, no inhibitory effects of similar concentrations of phenylpyruvate or α-keto isocaproate were observed on the isolated semipurified pyruvate or β-hydroxybutyrate dehydrogenases from rat brain mitochondria. The transport of pyruvate and β-hydroxybutyrate across the brain mitochondrial membrane was studied by both uptake and exchange of radioactively labelled substrates. Both these processes were inhibited by phenylpyruvate and α-ketoisocaproate. The results are interpreted as providing evidence for both pyruvate and β-hydroxybutyrate translocases across the brain mitochondrial membrane, and that the inhibition of these systems by phenylpyruvate and α-keto isocaproate may be important lesions in phenylketonuria and maple syrup urine disease respectively.  相似文献   

11.
Oxidative decarboxylation and transamination of 1-14C-branched chain amino and alpha-keto acids were examined in mitochondria isolated from rat heart. Transamination was inhibited by aminooxyacetate, but not by L-cycloserine. At equimolar concentrations of alpha-ketoiso[1-14C]valerate (KIV) and isoleucine, transamination was increased by disrupting the mitochondria with detergent which suggests transport may be one factor affecting the rate of transamination. Next, the subcellular distribution of the aminotransferase(s) was determined. Branched chain aminotransferase activity was measured using two concentrations of isoleucine as amino donor and [1-14C]KIV as amino acceptor. The data show that branched chain aminotransferase activity is located exclusively in the mitochondria in rat heart. Metabolism of extramitochondrial branched chain alpha-keto acids was examined using 20 microM [1-14C]KIV and alpha-ketoiso[1-14C]caproate (KIC). There was rapid uptake and oxidation of labeled branched chain alpha-keto acid, and, regardless of the experimental condition, greater than 90% of the labeled keto acid substrate was metabolized during the 20-min incubation. When a branched chain amino acid (200 microM) or glutamate (5 mM) was present, 30-40% of the labeled keto acid was transaminated while the remainder was oxidized. Provision of an alternate amino acceptor in the form of alpha-keto-glutarate (0.5 mM) decreased transamination of the labeled KIV or KIC and increased oxidation. Metabolism of intramitochondrially generated branched chain alpha-keto acids was studied using [1-14C]leucine and [1-14C]valine. Essentially all of the labeled branched chain alpha-keto acid produced by transamination of [1-14C]leucine or [1-14C]valine with a low concentration of unlabeled branched chain alpha-keto acid (20 microM) was oxidized. Further addition of alpha-ketoglutarate resulted in a significant increase in the rate of labeled leucine or valine transamination, but again most of the labeled keto acid product was oxidized. Thus, catabolism of branched chain amino acids will be favored by a high concentration of mitochondrial alpha-ketoglutarate and low intramitochondrial glutamate.  相似文献   

12.
Cerebral cortex tissue was obtained at autopsy from neonatal Poll Hereford calves with clinically confirmed maple syrup urine disease (MSUD), neonatal Holstein-Friesian calves with clinically confirmed citrullinemia, and matched controls. From this, synaptosomes were prepared for studies of neurotransmitter amino acid uptake and stimulus-induced release, and synaptic plasma membranes were obtained for studies of associated postsynaptic receptor binding sites. As well as having abnormal brain tissue concentrations of the pathognomic plasma amino acids (markedly increased levels of the branched-chain compounds valine, isoleucine, and leucine in MSUD; marked elevation of citrulline levels in citrullinemia), both groups of diseased animals showed reduced brain tissue concentrations of each of the transmitter amino acids glutamate, aspartate, and gamma-aminobutyric acid (GABA). Nontransmitter amino acids were generally unaffected in either disease. Citrullinemic calves showed a marked increase in brain glutamine concentration; in calves with MSUD, the glutamine concentration was raised, but to a much lesser extent. The Na(+)-dependent synaptosomal uptake of both glutamate and GABA was markedly reduced (to less than 50% of control values in both cases) in citrullinemic calves but was unaltered in calves with MSUD. Whereas synaptosomes from normal calves showed the expected stimulus-coupled release of transmitter amino acids, especially glutamate and aspartate, and no response to stimulus of nontransmitter amino acids, there was no increased release of transmitter amino acids in response to depolarization in synaptosomes from citrullinemic calves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Quinolinic acid (QA) is an endogenous neurotoxin involved in various neurological diseases, whose action seems to be exerted via glutamatergic receptors. However, the exact mechanism responsible for the neurotoxicity of QA is far from being understood. We have previously reported that QA inhibits vesicular glutamate uptake. In this work, investigating the effects of QA on the glutamatergic system from rat brain, we have demonstrated that QA (from 0.1 to 10mM) had no effect on synaptosomal L-[3H]glutamate uptake. The effect of QA on glutamate release in basal (physiological K+ concentration) or depolarized (40 mM KCl) conditions was evaluated. QA did not alter K+-stimulated glutamate release, but 5 and 10mM QA significantly increased basal glutamate release. The effect of dizolcipine (MK-801), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor on glutamate release was investigated. MK-801 (5 microM) did not alter glutamate release per se, but completely abolished the QA-induced glutamate release. NMDA (50 microM) also stimulated glutamate release, without altering QA-induced glutamate release, suggesting that QA effects were exerted via NMDA receptors. QA (5 and 10mM) decreased glutamate uptake into astrocyte cell cultures. Enhanced synaptosomal glutamate release, associated with inhibition of glutamate uptake into astrocytes induced by QA could contribute to increase extracellular glutamate concentrations which ultimately lead to overstimulation of the glutamatergic system. These data provide additional evidence that neurotoxicity of QA may be also related to disturbances on the glutamatergic transport system, which could result in the neurological manifestations observed when this organic acid accumulates in the brain.  相似文献   

14.
The energy dependence of gamma-aminobutyric acid (GABA) uptake was characterized in rat brain synaptic vesicles and in proteoliposomes reconstituted with a new procedure from vesicular detergent extracts. The proteoliposomes displayed high ATP-dependent GABA uptake activity with properties virtually identical to those of intact vesicles. GABA uptake was similar at chloride concentrations of 0 and 150 mM, i.e. conditions under which either the membrane potential (delta psi) or the pH difference (delta pH) predominates. Delta psi was gradually dissipated by increasing the concentration of SCN-. GABA uptake was reduced by 10 mM SCN-, showing less sensitivity to delta psi reduction than glutamate uptake but more than dopamine uptake. Dissipation of delta pH with NH+4 abolished GABA uptake at pH 7.3, whereas no significant inhibition occurred at pH 6.5. In contrast, dopamine uptake was inhibited more strongly, even at pH 6.5, and glutamate uptake was not reduced in either condition. We conclude that GABA uptake is driven by both components of the proton electrochemical gradient, delta pH and delta psi, and that this is different from the uptake of both dopamine and glutamate, which is more strongly dependent on delta pH and delta psi, respectively. Thus, our data suggest that GABA uptake is electrogenic and occurs in exchange for protons.  相似文献   

15.
Accumulation of the branched-chain alpha-keto acids (BCKA), alpha-ketoisocaproic acid (KIC), alpha-keto-beta-methylvaleric acid (KMV), and alpha-ketoisovaleric acid (KIV) and their respective branched-chain alpha-amino acids (BCAA) in tissues and biological fluids is the biochemical hallmark of patients affected by the neurometabolic disorder known as maple syrup urine disease (MSUD). Considering that brain energy metabolism is possibly altered in MSUD, the objective of this study was to determine creatine kinase (CK) activity, a key enzyme of energy homeostasis, in C6 glioma cells exposed to BCKA. The cells were incubated with 1, 5, or 10 mM BCKA for 3 h and the CK activity measured afterwards. The results indicated that the BCKA significantly inhibited CK activity at all tested concentrations. Furthermore, the inhibition caused by the BCKA on CK activity was totally prevented by preincubation with the energetic substrate creatine and by coincubation with the N-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, indicating that deficit of energy and nitric oxide (NO) are involved in these effects. In contrast, other antioxidants such as glutathione (GSH) and trolox (soluble Vitamin E) were not able to prevent CK inhibition. In addition, we observed that the C6 cells changed their usual rounded morphology when exposed for 3 h to 10 mM BCKA and that creatine and L-NAME prevented these morphological alterations. Considering the importance of CK for brain metabolism homeostasis, it is conceivable that inhibition of this enzyme by increased levels of BCKA may contribute to the neurodegeneration of MSUD patients.  相似文献   

16.
This investigation presents disturbances of the mitochondrial metabolism by arsenite, a hydrophilic dithiol reagent known as an inhibitor of mitochondrial alpha-keto acid dehydrogenases. Arsenite at concentrations of 0.1-1.0 mM was shown to induce a considerable oxidation of intramitochondrial NADPH, NADH, and glutathione without decreasing the mitochondrial membrane potential. The oxidation of NAD(P)H required the presence of phosphate and was sensitive to ruthenium red, but occurred without the addition of calcium salts. Mitochondrial reactions producing alpha-ketoglutarate from glutamate and isocitrate were modulated by arsenite through various mechanisms: (i) both glutamate transaminations, with oxaloacetate and with pyruvate, were inhibited by accumulating alpha-ketoglutarate; however, at low concentrations of alpha-ketoglutarate the aspartate aminotransferase reaction was stimulated due to the increase of NAD+ content; (ii) the oxidation of isocitrate was stimulated at its low concentration only, due to the oxidation of NADPH and NADH; this oxidation was prevented by concentrations of citrate or isocitrate greater than 1 mM; (iii) the conversion of isocitrate to citrate was suppressed, presumably as a result of the decrease of Mg2+ concentration in mitochondria. Thus the depletion of mitochondrial vicinal thiol groups in hydrophilic domains disturbs the mitochondrial metabolism not only by the inhibition of alpha-keto acid dehydrogenases but also by the oxidation of NAD(P)H and, possibly, by the change in the ion concentrations.  相似文献   

17.
Maple syrup urine disease (MSUD) is an inherited metabolic disorder biochemically characterized by the accumulation of branched-chain amino acids (BCAAs) and their branched-chain keto acids (BCKAs) in blood and other tissues. Neurological dysfunction is usually present in the affected patients, but the mechanisms of brain damage in this disease are not fully understood. Considering that brain energy metabolism seems to be altered in MSUD, the main objective of this study was to investigate the in vitro effect of BCAAs and BCKAs on creatine kinase activity, a key enzyme of energy homeostasis, in brain cortex of young rats. BCAAs, but not their BCKAs, significantly inhibited creatine kinase activity at concentrations similar to those found in the plasma of MSUD patients (0.5–5 mM). Considering the crucial role creatine kinase plays in energy homeostasis in brain, if this effect also occurs in the brain of MSUD patients, it is possible that inhibition of this enzyme activity may contribute to the brain damage found in this disease.  相似文献   

18.
The ontogeny of the uptake of glutamate, GABA and glycine into synaptic vesicles isolated from rat brain has been investigated. The vesicular uptake of the three amino acids increased with developmental age in parallel with synaptogenesis, indicating a functional role of uptake of the amino acids by synaptic vesicles in the nerve terminals. Uptake of the amino acids by plasma membrane particles (synaptosomes) in brain homogenate showed a somewhat different developmental profile. The uptake of glutamate increased markedly with developmental time, while the uptake of GABA showed only a slight increase. Uptake of glycine by plasma membrane particles was very low and therefore not registered. The observed developmental increase in uptake of glycine by synaptic vesicles isolated from brain, supports previous reports indicating that glycine can be taken up by vesicles from non-glycine terminals.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

19.
Excretion of alpha-keto acids by clinical isolates and laboratory strains of Salmonella typhimurium was determined by high-performance liquid chromatography analysis of culture supernatants. The levels of excretion increased markedly with increasing iron stress imposed by the presence of alpha,alpha'-dipyridyl or conalbumin in the medium. The major product was pyruvic acid, but significant concentrations of alpha-ketoglutaric acid, alpha-ketoisovaleric acid, and alpha-ketoisocaproic acid were also observed. Maximal excretion occurred at iron stress levels that initially inhibited bacterial growth; the concentration of alpha,alpha'-dipyridyl at which this was observed differed between strains depending on their ability to secrete and utilize siderophores, suggesting that the intracellular iron status was important in determining alpha-keto acid excretion. However, prolonged incubation of the siderophore-deficient S. typhimurium strain enb-7 under conditions of high iron stress resulted in significant delayed bacterial growth, promoted by tonB-dependent uptake of iron complexed with the high accumulated levels of pyruvic acid and other alpha-keto acids. Strain RB181, a fur derivative of enb-7, excreted massive amounts of alpha-keto acids into the culture medium even in the absence of any iron chelators (the concentration of pyruvic acid, for example, was >25 mM). Moreover, RB181 was able to grow and excrete alpha-keto acids in the presence of alpha,alpha'-dipyridyl at concentrations threefold greater than that which inhibited the growth of enb-7.  相似文献   

20.
1. The apparent Michaelis constants of the glutamate dehydrogenase (EC 1.4.1.3), the glutamate-oxaloacetate transaminase (EC 2.6.1.1) and the glutaminase (EC 3.5.1.2) of rat brain mitochondria derived from non-synaptic (M) and synaptic (SM2) sources were studied. 2. The kinetics of oxygen uptake of both populations of mitochondria in the presence of a fixed concentration of malate and various concentrations of glutamate or glutamine were investigated. 3. In both mitochondrial populations, glutamate-supported respiration in the presence of 2.5 mM-malate appears to be biphasic, one system (B) having an apparent Km for glutamate of 0.25 +/- 0.04 mM (n=7) and the other (A) of 1.64 +/- 0.5 mM (n=7) [when corrected for low-Km process, Km=2.4 +/- 0.75 mM (n=7)]. Aspartate production in these experiments followed kinetics of a single process with an apparent Km for glutamate of 1.8-2 mM, approximating to the high-Km process. 4. Oxygen-uptake measurement with both mitochondrial populations in the presence of malate and various glutamate concentrations in which amino-oxyacetate was present showed kinetics approximating only to the low-Km process (apparent Km for glutamate approximately 0.2 mM). Similar experiments in the presence of glutamate alone showed kinetics approximating only to the high-Km process (apparent Km for glutamate approximately 1-1.3 mM). 5. Oxygen uptake supported by glutamine (0-3 mM) and malate (2.5 mM) by the free (M) mitochondrial population, however, showed single-phase kinetics with an apparent Km for glutamine of 0.28 mM. 6. Aspartate and 2-oxoglutarate accumulation was measured in 'free' nonsynaptic (M) brain mitochondria oxidizing various concentrations of glutamate at a fixed malate concentration. Over a 30-fold increase in glutamate concentration, the flux through the glutamate-oxaloacetate transaminase increased 7--8-fold, whereas the flux through 2-oxoglutarate dehydrogenase increased about 2.5-fold. 7. The biphasic kinetics of glutamate-supported respiration by brain mitochondria in the presence of malate are interpreted as reflecting this change in the relative fluxes through transamination and 2-oxoglutarate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号