首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
信号蛋白分子的入核及出核转运是细胞因子和生长因子信号转导途径中的重要环节.核定位序列(NLS)是信号蛋白分子上与入核转运相关的氨基酸序列.核孔复合物(NPC)、核转运蛋白importin和能量供应体Ran/TC4在入核转运过程中也发挥了重要作用.另外,很多细胞因子和生长因子或其受体上所含有的NLS序列也具有核定位功能,并可能通过“伴侣机制”参与其他信号蛋白分子的入核转运.  相似文献   

2.
English  Arthur W. 《Brain Cell Biology》2003,32(5-8):943-960
The formation of neuronal sprouts, either from synaptic terminals or nearby nodes of Ranvier, is a widely known form of plasticity of motoneurons. Sprouts form in response to several stimuli, but most notably in partially denervated or paralyzed muscle. In search of the cellular or molecular basis of this phenomenon, several largely parallel lines of investigation have been pursued. Strong evidence is presented that at least four cytokines or growth factors may be involved in motoneuron sprouting, each of which uses a distinctive signaling pathway. Three of the different proposed sprouting molecules: neuroleukin, insulin-like growth factor, and neural cell adhesion molecules can be viewed as muscle-derived retrograde signaling molecules of roughly equal potency to induce motoneurons to sprout. A fourth molecule, ciliary neurotrophic factor (CNTF) is likely to form an essential anterograde signal, from Schwann cells to muscle fibers, that ultimately produces sprouting. Other cytokines and growth factors such a neurotrophins or GDNF family members are discussed, but their role in motoneuron sprouting is less clear. These cytokines and growth factors could represent redundant mechanisms for self-repair of the neuromuscular junction or they could interact at different levels of their cellular pathways.  相似文献   

3.
Growth factor superfamilies and mammalian embryogenesis   总被引:16,自引:0,他引:16  
With the availability of amino acid and nucleotide sequence information has come the realization that growth factors can be clustered in to superfamilies. Several of these superfamilies contain molecules that were not initially identified because of growth-promoting activities; rather they were discovered through their ability to regulate other processes. Certain members of these superfamilies are present during early mammalian embryogenesis. However, until recently, it has been difficult to manipulate the developing mammalian embryo to observe directly the effects of inappropriate, excessive, or reduced expression of these molecules. Despite this limitation, at least some of these molecules have been implicated in the control of differentiation and morphogenesis, two actions unpredicted from the cell biology of most of the growth factors. Moreover, these actions are reflected in nonmammalian species where homologues of the mammalian growth factors control crucial steps in the choice of developmental fate. This review describes five growth factor superfamilies and the role these molecules may have in controlling proliferation, differentiation, and morphogenesis during mammalian development.  相似文献   

4.
Cellular transformation may be accomplished in vitro and in vivo through the concerted action of growth factors and oncogenes. This association has demonstrated that malignant growth results from aberrations in growth factor-signal transduction pathways that normally operate to control proliferation. Activation of genes that code for growth factors and/or their receptors provides tumor cells with potential mechanisms to maintain their proliferative state. Tumor cells have been shown to produce endogenous substances that augment their growth (autocrine stimulation), as well as responding to exogenous substances (paracrine stimulation). With solid tumor cells these responses have been shown to involve aberrant expression of growth factor and/or receptor genes. The study of the interrelationship of these various growth regulatory molecules is important not only in the identification of gene products essential to cellular proliferation, but also in providing clues as to what forces are driving tumor cell growth.  相似文献   

5.
Reciprocal signals between the motor axon and myofiber induce structural and functional differentiation in the developing neuromuscular junction (NMJ). Elevation of presynaptic acetylcholine (ACh) release on nerve-muscle contact and the correlated increase in axonal-free calcium are triggered by unidentified membrane molecules. Restriction of axon growth to the developing NMJ and formation of active zones for ACh release in the presynaptic terminal may be induced by molecules in the synaptic basal lamina, such as S-laminin, heparin binding growth factors, and agrin. Acetylcholine receptor (AChR) synthesis by muscle cells may be increased by calcitonin gene-related peptide (CGRP), ascorbic acid, and AChR-inducing activity (ARIA)/heregulin, which is the best-established regulator. Heparin binding growth factors, proteases, adhesion molecules, and agrin all may be involved in the induction of AChR redistribution to form postsynaptic-like aggregates. However, the strongest case has been made for agrin's involvement. “Knockout” experiments have implicated agrin as a primary anterograde signal for postsynaptic differentiation and muscle-specific kinase (MuSK), as a putative agrin receptor. It is likely that both presynaptic and postsynaptic differentiation are induced by multiple molecular signals. Future research should reveal the physiological roles of different molecules, their interactions, and the identity of other molecular participants.  相似文献   

6.
D J Hill 《Hormone research》1992,38(5-6):197-202
Peptide growth factors are expressed by multiple tissues in the animal and human embryo and fetus. They undergo specific interactions which control the rate of cellular proliferation, tissue differentiation and the induction of specific morphogenic events such as mesoderm formation in the embryo. Biologic control may not only be exerted at the level of growth factor synthesis and receptor expression but by the sequestration and storage of growth factors by extracellular matrix molecules. In the case of insulin-like growth factors (IGFs), storage maybe mediated by attachment to specific IGF-binding proteins which may additionally modulate biological potency. Basic fibroblast growth factor (basic FGF) and transforming growth factor-beta (TGF beta) directly bind to glycosaminoglycan molecules. Release of growth factors from these stores may be by local proteolytic action. A sequential expression of basic FGF, IGF-II and TGF beta occurs in the ovine fetal epiphyseal growth plate as chondrocytes progress from a proliferative to a postmitotic, hypertrophic state. Cellular phenotype may be largely explained by the relative amounts of these autocrine growth factors within the growth plate.  相似文献   

7.
Gene transfer as a tool to induce therapeutic vascular growth   总被引:20,自引:0,他引:20  
  相似文献   

8.
Blood serum serves as a chemoattractant towards which cancer cells migrate and invade, facilitating their intravasation into microvessels. However, the actual molecules towards which the cells migrate remain elusive. This modified invasion assay has been developed to identify targets which drive cell migration and invasion. This technique compares the invasion index under three conditions to determine whether a specific hormone, growth factor, or cytokine plays a role in mediating the invasive potential of a cancer cell. These conditions include i) normal fetal bovine serum (FBS), ii) charcoal-stripped FBS (CS-FBS), which removes hormones, growth factors, and cytokines and iii) CS-FBS + molecule (denoted “X”). A significant change in cell invasion with CS-FBS as compared to FBS, indicates the involvement of hormones, cytokines or growth factors in mediating the change. Individual molecules can then be added back to CS-FBS to assay their ability to reverse or rescue the invasion phenotype. Furthermore, two or more factors can be combined to evaluate the additive or synergistic effects of multiple molecules in driving or inhibiting invasion. Overall, this method enables the investigator to determine whether hormones, cytokines, and/or growth factors play a role in cell invasion by serving as chemoattractants or inhibitors of invasion for a particular type of cancer cell or a specific mutant. By identifying specific chemoattractants and inhibitors, this modified invasion assay may help to elucidate signaling pathways that direct cancer cell invasion.  相似文献   

9.
Growth factors: a role in guiding axons?   总被引:1,自引:0,他引:1  
A remarkable finding to emerge in recent years is that the early brain neuroepithelium is highly patterned before axonogenesis begins. Growth factors are among a variety of classes of molecules whose regionalized expression divides the early brain into molecularly distinct domains. Thus, when axons first grow to their synaptic targets, growth factor signalling may help them to navigate. This review discusses recent studies that reveal that growth factors can act as chemoattractants and repellents and that growth factor signalling is important for target entry. These new findings raise the compelling idea that growth factors play an active role in axon navigation.  相似文献   

10.
A method previously used in this laboratory for entrapment of tumor cells in alginate beads has been extended to provide a slow release delivery system for growth factors with known in vivo angiogenic activity. Protein growth factors were entrapped in alginate beads in amounts sufficient to cause incorporation of 3H-thymidine by COMMA-D cells in vitro, and in vivo neovascularization when injected subcutaneously into Balb/c mice. Entrapment of 125I-labelled growth factors showed that the amount of molecule entrapped in alginate beads may vary with the charge of the molecule. In vitro cell proliferation studies showed that entrapment in alginate beads may provide a slow-release system or a stabilizing environment for the protein. In some cases biological activity of the growth factor in solution was increased by the presence of control alginate beads. When alginate-entrapped growth factors were injected into Balb/c mice, induction of new blood vessels could be monitored qualitatively by macroscopic photography and assessed quantitatively by measuring the pooling of radiolabelled red blood cells at the experimental site. Subcutaneous injection of purified angiogenic factors not entrapped in alginate beads did not cause neovascularization. Diffusion of 125I-labelled growth factors from alginate beads in the animal showed that release in vivo may depend on the charge of the protein molecule. These results indicate that injection of purified molecules entrapped in alginate beads provides an effective localized and slow-release delivery of biologically active molecules. This delivery system may extend the time of effectiveness of biologically active molecules in vivo compared to direct injection without alginate entrapment. The method of entrapment and injection has potential for identifying active factors in tumor-induced angiogenesis and testing new compounds as modulators of neovascularization.  相似文献   

11.
Bone morphogenetic proteins (BMPs) were first studied as growth factors or morphogens of the transforming growth factor-beta superfamily. These growth molecules, originally associated with bone and cartilage development, are now known to play an important role in morphogenesis and homeostasis in many other tissues. More recently, significant contributions from BMPs, their receptors, and interacting molecules have been linked to carcinogenesis and tumor progression. On the other hand, BMPs can sometimes function as a tumor suppressor. Our report highlights these new roles in the pathogenesis of cancer that may suggest novel targets for therapeutic intervention.  相似文献   

12.
Mesenchymal stem cells (MSCs) have both multi-lineage differentiation potential and immunosuppressive properties, making them ideal candidates for regenerative medicine. However, their immunosuppressive properties potentially increase the risk of cancer progression and opportunistic infections. In this study, MSCs isolated from human umbilical cord blood (UCMSCs) and adult bone marrow (BMMSCs) were infected with human cytomegalovirus (HCMV). Cytopathic changes were observed 10 days post infection. PCR products amplified from genomic DNA and cDNA were used to confirm the HCMV infection of the UCMSCs and BMMSCs. Real-time PCR was conducted to quantify the expression of immunomodulatory molecules, including cytokines, chemokines, growth factors, adhesion molecules and cancer-related genes. Our results indicate high upregulation of the majority of these molecules, including many growth factors, tumor necrosis factor alpha, interleukin-8, interleukin-6 and interferon gamma. Adhesion molecules (VCAM-1, TCAM-1 and selectin-E) were downregulated in the infected UCMSCs and BMMSCs. Antibody chip array evaluation of cell culture media indicated that the growth factor secretion by UCMSCs and BMMSCs was greatly influenced (p < 0.001) by HCMV. The stimulation of MSCs with HCMV led to the activation of downstream signaling pathways, including pSTAT3 and Wnt2. Our results show that HCMV can significantly alter the functions of both UCMSCs and BMMSCs, although not in the same way or to the same extent. In both cases, there was an increase in the expression of proangiogenic factors in the microenvironment following HMCV infection. The discrepancy between the two cell types may be explained by their different developmental origin, although further analysis is necessary. Future studies should decipher the underlying mechanism by which HCMV controls MSCs, which may lead to the development of new therapeutic treatments.  相似文献   

13.
Despite the relevance of epithelial cells to the biology of cancer, considerably less is known about the capacity of specific growth factors to control the proliferation of these cells compared to information available on fibroblastic cells. Epidermal growth factor is the most widely recognized mitogen for epithelial cells. We demonstrate that prostatropin and acidic fibroblast growth factor, structurally similar molecules, are potent growth factors for the mouse keratinocyte cell line Balb/MK. This indicates that these growth factors in addition to epidermal growth factor may be of physiological relevance to epidermal cell proliferation.  相似文献   

14.
15.
Neural recognition molecules were discovered and characterized initially for their functional roles in cell adhesion as regulators of affinity between cells and the extracellular matrix in vitro. They were then recognized as mediators or co-receptors which trigger signal transduction mechanisms affecting cell adhesion and de-adhesion. Their involvement in contact attraction and repulsion relies on cell-intrinsic properties that are modulated by the spatial contexts of their expression at particular stages of ontogenetic development, in synaptic plasticity and during regeneration after injury. The functional roles of recognition molecules in cell proliferation and migration, determination of developmental fate, growth cone guidance, and synapse formation, stabilization and modulation have been well documented not only by in vitro, but also by in vivo studies that have been greatly aided by generation of genetically altered mice. More recently, the functions of recognition molecules have been investigated under conditions of neural repair and manipulated using a broad range of genetic and pharmacological approaches to achieve a beneficial outcome. The principal aim of most therapeutically oriented approaches has been to neutralize inhibitory factors. However, less attention has been paid to enhancing repair by stimulating the stimulatory factors. When considering potential therapeutic strategies, it is worth considering that a single recognition molecule can possess domains that are conducive or repellent and that the spatial distribution of recognition molecules can determine the overall function: Recognition molecules may be repellent for neurite outgrowth when presented as barriers or steep-concentration gradients and conducive when presented as uniform substrates. The focus of this review will be on the more recent attempts to study the conducive mechanisms with the expectation that they may be able to tip the balance from a regeneration inhospitable to a hospitable environment. It is likely that a combination of the two principles, as multifactorial as each principle may be in itself, will be of therapeutic value in humans.  相似文献   

16.
The cellular and molecular basis of peripheral nerve regeneration   总被引:48,自引:0,他引:48  
Functional recovery from peripheral nerve injury and repair depends on a multitude of factors, both intrinsic and extrinsic to neurons. Neuronal survival after axotomy is a prerequisite for regeneration and is facilitated by an array of trophic factors from multiple sources, including neurotrophins, neuropoietic cytokines, insulin-like growth factors (IGFs), and glial-cell-line-derived neurotrophic factors (GDNFs). Axotomized neurons must switch from a transmitting mode to a growth mode and express growth-associated proteins, such as GAP-43, tubulin, and actin, as well as an array of novel neuropeptides and cytokines, all of which have the potential to promote axonal regeneration. Axonal sprouts must reach the distal nerve stump at a time when its growth support is optimal. Schwann cells in the distal stump undergo proliferation and phenotypical changes to prepare the local environment to be favorable for axonal regeneration. Schwann cells play an indispensable role in promoting regeneration by increasing their synthesis of surface cell adhesion molecules (CAMs), such asN-CAM, Ng-CAM/L1, N-cadherin, and L2/HNK-1, by elaborating basement membrane that contains many extracellular matrix proteins, such as laminin, fibronectin, and tenascin, and by producing many neurotrophic factors and their receptors. However, the growth support provided by the distal nerve stump and the capacity of the axotomized neurons to regenerate axons may not be sustained indefinitely. Axonal regeneration may be facilitated by new strategies that enhance the growth potential of neurons and optimize the growth support of the distal nerve stump in combination with prompt nerve repair.  相似文献   

17.
Members of the TGFbeta superfamily play many roles in embryonic development and adult tissue homeostasis. Now recent work focused on growth and differentiation factors (GDFs) suggest that these TGFbeta-like molecules may also control organ size and may, in fact, be the long sought after chalones, or negative growth regulators.  相似文献   

18.
Episomal plasmids and viruses in mammalian cells present small targets for X-ray-induced DNA damage. At doses up to 100 Gy, DNA strand breaks or endonuclease III-sensitive sites were not discernible in 10.3-kb Epstein-Barr virus-based plasmid DNA or in 4.9-kb defective simian virus 40 DNA. DNA replication in these small molecules, however, was inhibited strongly by X-ray doses of greater than or equal to 20 Gy, decreasing to only 20 to 40% of control values. Inhibition was relieved slightly by growth in caffeine but was increased by growth in 3-aminobenzamide. Inhibition of DNA replication in episomal DNA molecules that are too small to sustain significant damage directly to their DNA may be due to either (a) a trans-acting diffusible factor that transfers the consequences of DNA breakage to episomes and to other replicating molecules, (b) a cis-acting mechanism in which episomes are structurally linked to genomic chromatin, and replication of both episomal and chromosomal replicons is under common control, or (c) radiation damage on other cellular structures unrelated to DNA. The resolution of these cellular mechanisms may shed light on the X-ray-resistant replication in ataxia-telangiectasia and may suggest strategies for molecular characterization of potential trans- or cis-acting factors.  相似文献   

19.
The formation of a 'tumor-associated vasculature', a process referred to as tumor angiogenesis, is a stromal reaction essential for tumor progression. Inhibition of tumor angiogenesis suppresses tumor growth in many experimental models, thereby indicating that tumor-associated vasculature may be a relevant target to inhibit tumor progression. Among the antiangiogenic molecules reported to date many are peptides and proteins. They include cytokines, chemokines, antibodies to vascular growth factors and growth factor receptors, soluble receptors, fragments derived from extracellular matrix proteins and small synthetic peptides. The polypeptide tumor necrosis factor (TNF, Beromun) was the first drug registered for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of the tumor vasculature. More recently, bevacizumab (Avastin), an antibody against vascular endothelial growth factor (VEGF)-A, was approved as the first systemic antiangiogenic drug that had a significant impact on the survival of patients with advanced colorectal cancer, in combination with chemotherapy. Several additional peptides and antibodies with antiangiogenic activity are currently tested in clinical trials for their therapeutic efficacy. Thus, peptides, polypeptides and antibodies are emerging as leading molecules among the plethora of compounds with antiangiogenic activity. In this article, we will review some of these molecules and discuss their mechanism of action and their potential therapeutic use as anticancer agents in humans.  相似文献   

20.
多项动物实验和临床实啦已经充分证实,抗血管生成疗法可以抑制肿瘤生长。在可抑制肿瘤生长的分子中,许多是蛋白与多肽,包括细胞因子、趋化因子、血管内皮生长因子及其受体的抗体、可溶性受体、胞外基质蛋白片段及小分子合成多肽等。简要综述其中部分分子的作用机理及临床应用情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号