首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial transposon Tn10 inserts preferentially into specific target sequences. This insertion specificity appears to be linked to the ability of target sites to adopt symmetrically positioned DNA bends after binding the transposition machinery. Target DNA bending is thought to permit the transposase protein to make additional contacts with the target DNA, thereby stabilizing the target complex so that the joining of transposon and target DNA sequences can occur efficiently. In the current work, we have asked whether the introduction of a discontinuity in a target DNA strand, a modification that is expected to make it easier for a DNA molecule to bend, can enhance or rescue target capture under otherwise suboptimal reaction conditions. We show that either a nick or a missing phosphate specifically at the site of reaction chemistry increases the ability of various target DNAs to form the target capture complex. The result suggests that the bends in the target DNA are highly localized and include the scissile phosphates. This raises the possibility that strand transfer is mechanistically linked to target capture. We have also identified specific residues in the target DNA and in transposase that appear to play an important role in target DNA bending.  相似文献   

2.
3.
The bacterial transposon Tn10 inserts preferentially into specific DNA sequences. DNA footprinting and interference studies have revealed that the Tn10-encoded transposase protein contacts a large stretch of target DNA ( approximately 24 bp) and that the target DNA structure is deformed upon incorporation into the transpososome. Target DNA deformation might contribute significantly to target site selection and thus it is of interest to further define the nature of this deformation. Circular permutation analysis was used to demonstrate that the target DNA is bent upon its incorporation into the transpososome. Two lines of evidence are presented that target DNA bending is an important event in target site selection. First, we demonstrate a correlation between increased target site usage and an increased level of target DNA bending. Second, transposase mutants with relaxed target specificity are shown to cause increased target DNA bending relative to wild-type transposase. This latter observation provides new insight into how relaxed specificity may be achieved. We also show that Ca(2+) facilitates target capture by stabilizing transposase interactions with sequences immediately flanking the insertion site. Ca(2+) could, in theory, exert this effect by stabilizing bends in the target DNA.  相似文献   

4.
Archaeal box C/D sRNAs guide the 2'-O-methylation of target nucleotides using both terminal box C/D and internal C'/D' RNP complexes. In vitro assembly of a catalytically active Methanocaldococcus jannaschii sR8 box C/D RNP provides a model complex to determine those structural features of the guide:target RNA duplex important for sRNA-guided nucleotide methylation. Watson-Crick pairing of guide and target nucleotides was found to be essential for methylation, and mismatched bases within the guide:target RNA duplex also disrupted nucleotide modification. However, dependence upon Watson-Crick base-paired guide:target nucleotides for methylation was compromised in elevated Mg(2+) concentrations where mismatched target nucleotides were modified. Nucleotide methylation required that the guide:target duplex consist of an RNA:RNA duplex as a target ribonucleotide within a guide RNA:target DNA duplex that was not methylated. Interestingly, D and D' target RNAs exhibited different levels of methylation when deoxynucleotides were inserted into the target RNA or when target methylation was carried out in elevated Mg(2+) concentrations. These observations suggested that unique structural features of the box C/D and C'/D' RNPs differentially affect their respective methylation capabilities. The ability of the sR8 box C/D sRNP to methylate target nucleotides positioned within highly structured RNA hairpins suggested that the sRNP can facilitate unwinding of double-stranded target RNAs. Finally, increasing target RNA length to extend beyond those nucleotides that base pair with the sRNA guide sequence significantly increased sRNP turnover and thus nucleotide methylation. This suggests that target RNA interaction with the sRNP core proteins is also important for box C/D sRNP-guided nucleotide methylation.  相似文献   

5.
Multimodal integration, which mainly refers to multisensory facilitation and multisensory inhibition, is the process of merging multisensory information in the human brain. However, the neural mechanisms underlying the dynamic characteristics of multimodal integration are not fully understood. The objective of this study is to investigate the basic mechanisms of multimodal integration by assessing the intermodal influences of vision, audition, and somatosensory sensations (the influence of multisensory background events to the target event). We used a timed target detection task, and measured both behavioral and electroencephalographic responses to visual target events (green solid circle), auditory target events (2 kHz pure tone) and somatosensory target events (1.5 ± 0.1 mA square wave pulse) from 20 normal participants. There were significant differences in both behavior performance and ERP components when comparing the unimodal target stimuli with multimodal (bimodal and trimodal) target stimuli for all target groups. Significant correlation among reaction time and P3 latency was observed across all target conditions. The perceptual processing of auditory target events (A) was inhibited by the background events, while the perceptual processing of somatosensory target events (S) was facilitated by the background events. In contrast, the perceptual processing of visual target events (V) remained impervious to multisensory background events.  相似文献   

6.
7.
To investigate the saccadic system in the mantis, I applied distracter interference paradigms. These involved presenting the mantis with a fixation target and one or several distracters supposed to affect saccades towards the target. When a single target was presented, a medium-sized target located in its lower visual field elicited higher rates of saccade response. This preference for target size and position was also observed when a target and a distracter were presented simultaneously. That is, the mantis chose and fixated the target rather than a distracter that was much smaller or larger than the target, or was located above the target. Furthermore, the mantis' preference was not affected by increasing the number of distracters. However, the presence of the distracter decreased the occurrence rate of saccade and increased the response time to saccade. I conclude that distracter interference paradigms are an effective way of investigating the visual processing underlying saccade generation in the mantis. Possible mechanisms of saccade generation in the mantis are discussed.  相似文献   

8.
Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the “know-how” of therapeutic modality by design.  相似文献   

9.
The conjugative transposon Tn916 inserts with widely different frequencies into a variety of target sites with related nucleotide sequences. The binding of chimeric proteins, consisting of maltose-binding protein fused to Tn916 integrase, to three different target sequences for Tn916 was examined by DNase I protection experiments. The C-terminal DNA binding domain of the Tn916 integrase protein was shown to protect approximately 40 bp, spanning target sites in the orfA and cat genes of the plasmid pIP501 and in the cylA gene of the plasmid pAD1. Competition binding assays showed that the affinities of the three target sites for Tn916 integrase varied over a greater than 3- but less than 10-fold range and that the cat target site bound integrase at a lower affinity than did the other two target sites. A PCR-based assay for transposition in Escherichia coli was developed to assess the frequency with which a defective minitransposon inserted into each target site. In these experiments, integrase provided in trans from a plasmid was the sole transposon-encoded protein present. This assay detected transposition into the orfA and cylA target sites but not into the cat target site. Therefore, the frequency of transposon insertion into a particular target site correlated with the affinity of the target for the integrase protein. Sequences within the target fragments similar to known Tn916 insertion sites were not protected by integrase protein. Analysis ot he electrophoretic behavior of circularly permuted sets of DNA fragments showed that all three target sites contained structural features consistent with the presence of a static bend, suggesting that these structural features in addition to the primary nucleotide sequence are necessary for integrase binding and, thus, target site activity.  相似文献   

10.

This study analyzed the characteristics of pursuit and assessed the influence of prior and visual information on eye velocity and saccades in amblyopic and control children, in comparison to adults. Eye movements of 41 children (21 amblyopes and 20 controls) were compared to eye movements of 55 adults (18 amblyopes and 37 controls). Participants were asked to pursue a target moving at a constant velocity. The target was either a ‘standard’ target, with a uniform color intensity, or a ‘noisy’ target, with blurry edges, to mimic the blurriness of an amblyopic eye. Analysis of pursuit patterns showed that the onset was delayed, and the gain was decreased in control children with a noisy target in comparison to amblyopic or control children with a standard target. Furthermore, a significant effect of prior and visual information on pursuit velocity and saccades was found across all participants. Moreover, the modulation of the effect of visual information on the pursuit velocity by group, that is amblyopes or controls with a standard target, and controls with a noisy target, was more limited in children. In other words, the effect of visual information was higher in control adults with a standard target compared to control children with the same target. However, in the case of a blurry target, either in control participants with a noisy target or in amblyopic participants with a standard target, the effect of visual information was larger in children.

  相似文献   

11.
The role of the target cell in its own death mediated by cytotoxic T lymphocytes (CTL) has been controversial. The ability of the pore-forming granule components of CTL to induce target cell death directly has been taken to suggest an essentially passive role for the target. This view of CTL-mediated killing ascribes to the target the single role of providing an antigenic stimulus to the CTL; this signal results in the vectoral degranulation and secretion of pore-forming elements onto the target. On the other hand, by a number of criteria, target cell death triggered by CTL appears fundamentally different from death resulting from membrane damage and osmotic lysis. CTL-triggered target cell death involves primary internal lesions of the target cell that reflect a physiological cell death process. Orderly nuclear disintegration, including lamin phosphorylation and solubilization, chromatin condensation, and genome digestion, are among the earliest events, preceding the loss of plasma membrane integrity. We have tested directly the involvement of the target cell in its own death by examining whether we could isolate mutants of target cells that have retained the ability to be recognized by and provide an antigenic stimulus to CTL while having lost the capacity to respond by dying. Here, we describe one such mutant, BW87. We have used this CTL-resistant mutant to analyze the mechanisms of CTL-triggered target cell death under a variety of conditions. The identification of a mutable target cell element essential for the cell death response to CTL provides genetic evidence that target cell death reflects an active cell suicide process similar to other physiological cell deaths.  相似文献   

12.
Effect of target secondary structure on RNAi efficiency   总被引:4,自引:0,他引:4  
RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful tool for gene knockdown studies. However, the levels of knockdown vary greatly. Here, we examine the effect of target disruption energy, a novel measure of target accessibility, along with other parameters that may affect RNAi efficiency. Based on target secondary structures predicted by the Sfold program, the target disruption energy represents the free energy cost for local alteration of the target structure to allow target binding by the siRNA guide strand. In analyses of 100 siRNAs and 101 shRNAs targeted to 103 endogenous human genes, we find that the disruption energy is an important determinant of RNAi activity and the asymmetry of siRNA duplex asymmetry is important for facilitating the assembly of the RNA-induced silencing complex (RISC). We estimate that target accessibility and duplex asymmetry can improve the target knockdown level significantly by nearly 40% and 26%, respectively. In the RNAi pathway, RISC assembly precedes target binding by the siRNA guide strand. Thus, our findings suggest that duplex asymmetry has significant upstream effect on RISC assembly and target accessibility has strong downstream effect on target recognition. The results of the analyses suggest criteria for improving the design of siRNAs and shRNAs.  相似文献   

13.
Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.  相似文献   

14.
15.
16.
T Hong  E Murphy  J Groarke    K Drlica 《Journal of virology》1993,67(2):1127-1131
The target specificity of DNA strand transfer mediated by human immunodeficiency virus type 1 integrase was examined in vitro with synthetic oligonucleotides. Although insertion occurred at most locations in the target, some sites were preferred over others by at least 15-fold. Changing the nucleotide sequence of the target changed the distribution of preferred sites in complex ways, some of which included changes in target preference distant from the sequence alteration. Alignment of target sequences revealed that adenosine is preferred adjacent to the insertion site. Strand transfer occurred to within 2 nucleotides of the 3' end and to within 3 nucleotides of the 5' end of the target. This suggests that only 2 or 3 nucleotides flanking the target site are required for integration; such restricted contact with target DNA would allow integrase to insert the two ends of viral DNA into two closely spaced sites in host DNA, consistent with the concerted in vivo integration reaction that generates a 5-bp target duplication.  相似文献   

17.
The hawkmoth, Manduca sexta, uses both colour and odour to find flowers when foraging for nectar. In the present study we investigated how vision and olfaction interact during learning. Manduca sexta were equally attracted to a scented blue coloured feeding target (multimodal stimulus) as to one that does not carry any scent (unimodal stimulus; visual) or to an invisible scented target (unimodal stimulus; odour). This naive attraction to multimodal as well as to unimodal stimuli could be manipulated through training. Moths trained to feed from a blue, scented multimodal feeding target will, when tested in a set-up containing all three feeding targets, select the multimodal target as well as the scented, unimodal target, but ignore the visual target. Interestingly, moths trained to feed from a blue, unimodal visual feeding target will select the visual target as well as the scented, multimodal target, but ignore the unimodal odour target. Our results indicate that a multimodal target is perceived as two separate modalities, colour and odour, rather than as a unique fused target. These findings differ from earlier studies of desert ants that perceive combined visual and odour signals as a unique fused stimulus following learning trials.  相似文献   

18.
Cell surface N-linked sugars may play a role in target cell recognition by cytotoxic T lymphocytes (CTL). We have studied this role by treating tumor cell targets with tunicamycin, an effective inhibitor of N-linked glycosylation in mammalian cells. We determined a tunicamycin treatment protocol in which glycosylation was blocked and in which target cell killing by 5-day primary mixed lymphocyte reaction CTL was inhibited, yet in which cell viability was high and expression of major histocompatibility complex molecules was normal. It was found that tunicamycin-treated cells were killed only about one-half as well as untreated targets and that tunicamycin-treated target cells were less effective than untreated target cells as cold target competitors in cold target competition experiments. These observations suggest that for optimal killing, CTL require an interaction with the target cell that involves N-linked glycans on the target cell surface.  相似文献   

19.
In order to utilize the mixed lymphocyte reaction (MLR) as an assay of T-lymphocyte competence, pools of target lymphocytes obtained from different individuals are used to increase the magnitude and decrease the variation of the in vitro response. We evaluated variations in MLR response due to variations in target cell populations. Response increased with an increased target/responder cell ratio. Peak response occurred with a target/responder cell ratio of between 1:1 and 1:4. Response to a pool of lymphocytes from different individuals increased as the number of individuals contributing to the pool increased. Peak stimulation occurred with three to four different donors to the target cell pool. Stimulation produced by pooled target cells resulted in a higher mean index of stimulation and decreased variation of response as compared to stimulation produced by target cells from individual donors. Stimulation produced by pooled target cells was approximately equal to the sum of the stimulation produced by each of the target cell populations acting alone. These findings indicate a practical method of modifying the MLR as a test of T-lymphocyte function.  相似文献   

20.
We propose a multistage stochastic model to explain data on the kinetics of target cell lysis by cytotoxic T lymphocytes in multicellular conjugates. A novel feature of our model is that we explicitly consider both the lethal hitting stage and the target cell disintegration stage of the cytolytic process. Further, we allow for the possibility that target cell disintegration is itself a complex process composed of many events. The comparison of our model with the data of other investigators suggests that cytotoxic T cells deliver lethal hits at random to undamaged target cells. Having received a lethal hit, the target cell disintegrates over a variable length of time. The disintegration times of target cells from different conjugates appear to be randomly distributed and to be consistent with a model in which disintegration occurs by at least two major, sequential, rate-limiting events. For conjugates containing one lymphocyte and multiple target cells, the mean rate at which a lethally hit target cell disintegrates is found to be independent of the total number of target cells in the conjugate. Our model predicts that in such multicellular conjugates, individual target cells lyse one by one, on average at approximately 30-min intervals, thus agreeing closely with previously reported experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号