首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major phospholipid exchange protein from bovine brain catalyzes the transfer of phosphatidylinositol and phosphatidylcholine between rat liver microsomes and sonicated liposomes. The effect of liposomal lipid composition on the transfer of these phospholipids has been investigated. Standard liposomes contained phosphatidylcholine-phosphatidic acid (98:2, mol%); in general, phosphatidylcholine was substituted by various positively charged, negatively charged, or zwitterionic lipids. The transfer of phosphatidylinositol was essentially unaffected by the incorporation into liposomes of phosphatidic acid, phosphatidylserine, or phosphatidylglycerol (5–20 mol%) but strongly depressed by the incorporation of stearylamine (10–40 mol%). Marked stimulation (2–4-fold) of transfer activity was observed into liposomes containing phosphatidylethanolamine (2–40 mol%). The inclusion of sphingomyelin in the acceptor liposomes gave mixed results: stimulation at low levels (2–10 mol%) and inhibition at higher levels (up to 40 mol%). Cholesterol slightly diminished transfer activity at a liposome cholesterol/phospholipid molar ratio of 0.81. Similar effects were noted for the transfer to phosphatidylcholine from microsomes to these various liposomes. Compared to standard liposomes, the magnitude of Km tended to increase for liposomes which depressed phospholipid transfer and to decrease for those which stimulated; little change was observed in the values of V. Single phospholipid liposomes of phosphatidylinositol were inhibitory when added to standard liposomes.  相似文献   

2.
An analysis of proteins, phospholipids and cholesterol from liver microsomal membranes was performed in normal and post-cholestatic rats. Bile duct ligated rats showed a progressive decrease of these membrane constituents. Minor changes in peptide analysis, a marked decrease of phosphatidylcholine and phosphatidylinositol, disappearance of phosphatidylethanolamine and sphingomyelin, and a clear increment of phosphatidylserine was observed in post-cholestatic as compared to normal group. It was concluded that extra-hepatic cholestasis produces structural changes on the liver microsomes, particularly on phospholipid profile.  相似文献   

3.
The fatty acid composition of constituent phospholipids and the cholesterol content of rat liver plasma membranes were determined subsequent to maternal alcohol ingestion during pregnancy and lactation. The alcoholic group was given a liquid Metrecal diet containing 37% ethanol-derived calories. The control group was pair-fed an isocaloric sucrose/Metrecal diet. Litters were killed for lipid analyses at days 5, 15 and 25 after birth. These studies revealed that the total phospholipid phosphorus was similar and increased significantly with age in both groups. Cholesterol also increased significantly with age in both groups but was greater in the alcoholic pups, resulting in a higher cholesterol/phospholipid molar ratio. While the phosphatidylethanolamine (PE) content increased with age in both groups, that of sphingomyelin decreased. Phosphatidylserine + phosphatidylinositol (PS + PI) was significantly higher in the control group at all ages studied. A consistent increase of C22:6 in phosphatidylcholine (PC), sphingomyelin, PS + PI and in the total phospholipid fraction from alcoholic pups was observed. Although other fatty acid changes were found in PC, PS + PI and sphingomyelin, PE was not affected. These results suggest that specific adaptive changes were induced in the liver plasma membrane lipids of the progeny from alcoholic rats.  相似文献   

4.
1. The phospholipid composition of hepatic microsomal fractions from different developmental stages of embryonic chick was established. The major components were phosphatidylcholine (approx. 66%), phosphatidylethanolamine plus phosphatidylserine (approx. 21%) and sphingomyelin (approx. 9%). 2. There were no significant changes in the phospholipid composition during embryonic development from 9 to 20 days. 3. When microsomal subfractions were prepared it was found that the smooth-microsomal fractions (Ia and Ib) had a significantly greater sphingomyelin content than the rough-microsomal fraction (II). This was compensated by a lower phosphatidylcholine content in fractions Ia and Ib and an increase of phosphatidylcholine in fraction II. 4. The significance of the differences in the phospholipid composition of smooth and rough microsomes is discussed with particular reference to the origin and interrelation of smooth and rough endoplasmic reticulum.  相似文献   

5.
The aim of the present study was to examine the effect of triiodothyronine (T3) on the content of phospholipids and on the incorporation of blood-borne palmitic acid into the phospholipid moieties in the nuclei of the rat liver. T3 was administered daily for 7 days, 10 microg x 100 g(-1). The control rats were treated with saline. Each rat received 14C-palmitic acid, intravenously suspended in serum. 30 min after administration of the label, samples of the liver were taken. The nuclei were isolated in sucrose gradient. Phospholipids were extracted from the nuclei fraction and from the liver homogenate. They were separated into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine and cardiolipin. The content and radioactivity of each fraction was measured. It was found that treatment with T3 reduced the content of phosphatidylinositol and increased the content of cardiolipin in the nuclear fraction. In the liver homogenate, the content of phosphatidylinositol decreased and the content of phosphatidylethanolamine and cardiolipin increased after treatment with T3. The total content of phospholipids after treatment with T3 remained unchanged, both in the nuclear fraction and in the liver homogenate. T3 reduced the specific activity of phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and cardiolipin and had no effect on the specific activity of sphingomyelin and phosphatidylinositol both in the fraction of the nuclei and the liver homogenate. It is concluded that excess of triiodothyronine affects the content of phospholipids in the nuclei. The changes in the content of phospholipids in the nuclei largely reflect changes in their content in the liver.  相似文献   

6.
Only few data are available on the effect of training on phospholipid metabolism in skeletal muscles. The aim of the present study was to examine the effect of 6 weeks of endurance training on the content of particular phospholipid fractions and on the incorporation of blood-borne [14C]-palmitic acid into the phospholipids in different skeletal muscles (white and red sections of the gastrocnemius, the soleus and the diaphragm) of the rat. Lipids were extracted from the muscles and separated using thin-layer chromatography into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, cardiolipin and neutral lipids (this fraction being composed mostly of triacylglycerols). It was found that training did not affect the content of any phospholipid fraction in soleus muscle. It increased the content of sphingomyelin in white gastrocnemius muscle, cardiolipin and phosphatidylethanolamine in red gastrocnemius muscle and phosphatidylinositol in white gastrocnemius muscle and diaphragm. The total phospholipid content in red gastrocnemius muscle of the trained group was higher than in the control group. Training reduced the specific activity of sphingomyelin and cardiolipin in all muscles, phosphatidylcholine in soleus, red, and white gastrocnemius muscles, phosphatidylserine in all muscles, phosphatidylinositol in all except the soleus muscle, and phosphatidylethanolamine in hindleg muscles, but not in the diaphragm compared to the corresponding values in the sedentary group. It was concluded that endurance training affects skeletal muscle phospholipid content and the rate of incorporation of the blood-borne [14C]palmitic acid into the phospholipid moieties.  相似文献   

7.
The effects of low concentrations of cholesterol in mixtures of a negatively charged phospholipid (phosphatidylserine or phosphatidylglycerol) and another phospholipid (phosphatidylcholine, sphingomyelin or phosphatidylethanolamine) have been studied by differential scanning calorimetry. Only mixtures which showed a gel phase miscibility gap have been employed. It was demonstrated that in mixtures with phosphatidylethanolamine, cholesterol was preferentially associated with the negatively charged phospholipid, regardless whether this species represented the component with the high or with the low transition temperature in the mixture. In mixtures of a negatively charged phospholipid and phosphatidylcholine, cholesterol associated with the negatively charged phospholipid; when the phosphatidylcholine was the species with the low transition temperature, cholesterol had an affinity for the phosphatidylcholine and for the negatively charged phospholipid as well. Cholesterol, in a mixture of sphingomyelin with a high and phosphatidylserine with a low transition temperature, was preferentially associated with sphingomyelin.From these experiments it is concluded that phospholipids show a decrease in affinity for cholesterol in the following order: sphingomyelin ? phosphatidylserine, phosphatidylglycerol > phosphatidylcholine ? phosphatidylethanolamine.  相似文献   

8.
The aim of the present study was to examine the effect of acute streptozotocin diabetes on the content of different phospholipids and the incorporation of blood-borne 14C-palmitic acid into the phospholipid moieties in the rat liver nuclei. Diabetes was produced by intravenous administration of streptozotocin, and determinations were carried out two and seven days thereafter. Phospholipids were extracted from isolated nuclei and separated into the following fractions: sphingomyelin, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine and cardiolipin. Following that, they were quantified and radioactivity was measured. It was found that, in comparison to non-diabetic controls, two-day diabetes reduced the total content of phospholipids in the nuclei by 9.6%. The content of phospholipids in the nuclei by 9.6%. The content of phosphatidylcholine and phosphatidylserine was reduced and the content of the remaining phospholipids was stable. The specific activity of phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and cardiolipin, based on radioactivity incorporated from 14C-palmitic acid, was elevated. Seven-day diabetes resulted in a reduction of the total phospholipid content in the nuclei by 39.4%. This was accounted for by a reduction in the content of each phospholipid fraction with the exception of cardiolipin. The specific activity of each phospholipid fraction, was elevated in this group. It is concluded that insulin is involved in the regulation of the nuclear phospholipid content.  相似文献   

9.
(1) The rate of ATP synthesis coupled with succinate oxidation in rat liver mitochondria is low at birth and increases rapidly during the first postnatal hours (Nakazawa, T., Asami, K., Suzuki, H. and Yakawa, O. (1973) J. Biochem. 73, 397-406). A glucose injection given to newborn rats immediately after birth seemed to delay this maturation process. (2) Glucose administration specifically diminished the rate of 32Pi incorporation into phosphatidylcholine both in microsomes and in mitochondria while other phospholipids remained unaffected. (3) In newborn rat liver, 32Pi incorporation into phospholipids can be explained by de novo synthesis of phospholipids in microsomes followed by transfer to mitochondria with two exceptions phosphatidylserine and sphingomyelin. Indeed, after a 20-min incorporation of 32Pi into phospholipids, the specific radioactivity of phosphatidylserine and sphingomyelin was higher in mitochondria than in microsomes. (4) As far as phospholipid synthesis is concerned, no precursor-product relationship could be observed between light and heavy mitochondria.  相似文献   

10.
The aim of this work was to study the composition of long chain fatty acids and the n-6 and n-3 fatty acid ratios in aged and young Wistar rats in brain and hippocampus, related to relative cognitive deficits. The aged animals showed cognitive deficits during acquisition of a memory task (delayed alternation). In brain, results showed a decrease in palmitoleic and palmitic acid percentages in all the studied phospholipid classes and in the phosphatidylserine and phosphatidylcholine classes, respectively, in old rats, compared to the young ones. There was also an increase in oleic and stearic acid amounts in the sphingomyelin, phosphatidylserine and phosphatidylinositol classes and in the phosphatidylserine and phosphatidylcholine classes, respectively. Arachidonic acid amount was decreased in old rats, compared to the young ones, in the phosphatidylserine and phosphatidylinositol classes. Total n-6 and n-3 fatty acid amounts were both decreased in all phospholipid classes, with a stable n-6/n-3 ratio. Our results confirm that arachidonic acid concentration is decreased in aged rats and that this reduction, more significant in phosphatidylserine and phosphatidylinositol classes, should be related to the fact that low concentrations of arachidonic acid are observed during activation of glutamate receptor.  相似文献   

11.
1. Analyses of platelet lipid composition were carried out on material pooled from male and female miniature pigs. 2. The cholesterol/phospholipid molar ratio was 0.6. 3. Phosphatidylcholine represents the major class of phospholipids (47%) and phosphatidylinositol the minor (2%). 4. The main fatty acids of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and sphingomyelin were: palmitic, stearic, oleic, linoleic and arachidonic acids. 5. The ratios of saturated to unsaturated fatty acids were: sphingomyelin, 1.7; phosphatidylcholine, 1.2; phosphatidylserine, 0.9; phosphatidylethanolamine and phosphatidylinositol, 0.6. 6. Our results suggests that human and miniature pig platelet lipids bear several characteristics in common. This fact would allow miniature pig to be used as a new experimental model.  相似文献   

12.
A study of the lipidic pattern of the cerebral cortex of the normal adult rat during the daynight cycle was carried out. The changes observed were the following: phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine plus phosphatidic acid showed a peak at 16:00 hr possibly due to a general increase in phospholipid biosynthesis. During the nocturanl period the variations of phosphatidylcholine and phosphatidylethanolamine were not clearly observe, they might be due to an increase in the interconversion or exchange reaction, since the ratio phosphatidylcholine/phosphatidylethanolamine showed a significative change at 04:00 hr. This occurred because small but opposite changes in both phospholipids were observed, suggesting an increase in the methylation reactions of phospholipids. Cardiolipin showed a significant peak at 04:00 hr. Plasmalogens exhibited significative changes, an important diminution at 16:00 hr and a prominent peak at 24:00 hr. Cholesterol levels were high during the light period and low in the dark one. Cerebrosides and gangliosides showed no day-night variations. The changes observed indicate a phenomenon of biological rhythmicity synchronized by the photoperiod, suggesting that these fluctuations could act as physiological modulators of the properties and functions of the nerve cell membrane.  相似文献   

13.
The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and 32Pi, the incorporation of 32Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. 32Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of 32Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using [3H]serine-labeled phospholipid. Pulse and pulse-chase experiments with L-[U-14C] serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold whereas the turnover of newly synthesized phosphatidylserine was normal. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine. These results demonstrate that exogenous phosphatidylserine can be efficiently incorporated into Chinese hamster ovary cells and utilized for membrane biogenesis, endogenous phosphatidylserine biosynthesis thereby being suppressed.  相似文献   

14.
The aim of this study was to compare the effects of chronic (0.1 mol/L ethanol exposure during 30 days) and acute (0.5 mol/L ethanol exposure during 24 h) ethanol treatment on the physical properties and the lipid composition of plasma membranes of the WRL-68 cells (fetal human hepatic cell line). Using fluorescence polarization we found that ethanol treatment reduced membrane anisotropy due to disorganization of acyl chains in plasma membranes and consequently increased fluidity, as measured with the diphenylhexatriene probe. Addition of ethanolin vitro reduced anisotropy in control plasma membranes, whereas chronically ethanol-treated plasma membranes were relatively tolerant to thein vitro addition of ethanol. Acutely ethanol-treated plasma membranes exhibited a smaller anisotropy parameter value than control plasma membranes. We found a decrease in total phospholipid content in acute ethanol WRL-68 plasma membranes. Cholesterol content was increased in both ethanol treatments, and we also found a significant decrease in phosphatidylinositol and phosphatidylcholine and an increase in phosphatidylethanolamine content in ethanol-treated plasma membranes. Our data showed that ethanol treatment decreased the anisotropy parameter consistently with increased fluidity, while increasing the cholesterol/phospholipid ratio of plasma membranes of WRL-68 cells, but only chronically ethanol-treated plasma membranes exhibited tolerance to thein vitro addition of ethanol. It is important to note that some changes that were interpreted as a result of chronic ethanol treatment were also present in short-period ethanol treatments.Abbreviations DPH diphenylhexatriene - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - SPH sphingomyelin  相似文献   

15.
The phospholipid composition and the in vitro incorporation of radioactive CDP-choline into phosphatidylcholine was studied in mitochondria and microsomal fraction obtained from liver and brain of 20 day old hyperthyroid or hypothyroid rats. The chemical composition of the subcellular membranes isolated from brain differed markedly in both conditions. In hyperthyroidism the microsomal fraction was slightly affected while the mitochondria were also affected, but not as severely as in hypothyroidism, in which the microsomal fraction showed no alterations.The incorporation of the radioactive precursor into brain mitochondria isolated from hyperthyroid rats was markedly decreased, while no changes were observed in microsomes. However, incorporation into brain microsomal fraction obtained from hypothyroid rats was increased, while no changes were observed in mitochondria. Similar results were obtained in the studies performed with liver subcellular membranes from hyperthyroid animals while no changes were found in those from hypothyroid rats.Our results indicate that both experimental conditions affect in a different way the structure and function of brain mitochondria and microsomal fractions. They also give further support to our hypothesis that mitochondria have a certain degree of autonomy for the synthesis of phosphatidylcholine.Abbreviations used PS+PI phosphatidylserine+phosphatidylinositol - Sph sphingomyelin - PC phosphatidylcholine - PE phosphatidylethanolamine  相似文献   

16.
The brain of the adult ‘quaking’ mutant mouse is characterized by a reduced phospholipid content which can be ascribed not only to the myelin deficiency but also to a well-defined hydrocephalus. The mutant brain shows highly significant decreases in the percentage of ethanolamine plasmalogen, triphosphoinositide and phosphatidic acid in the whole phospholipid fraction, while the proportions of phosphatidylcholine, phosphatidyl-ethanolamine, diphosphatidylglycerol and phosphatidylinositol increase. The changes are consistent with the selective absence of ‘myelinic’ phospholipid although phosphatidylserine, sphingomyelin and diphosphoinositide are unchanged.  相似文献   

17.
Subcellular membranes isolated from rat liver in a form impermeable to macromolecules were treated with phospholipase A2 from Naga naja venom. The phosphatidylserine, phosphatidylethanolamine and about half of the phosphatidylcholine of microsomes, Golgi membranes, inner mitochondrial membranes, lysosomes and nuclear membranes were hydrolyzed. It is proposed that these phospholipids are localized in the outer surface of the membrane bilayer, which represents the cytoplasmic side in the living cell, while the remaining phosphatidylcholine and most of the phosphatidylinositol, sphingomyelin and cardiolipin may be assigned to the inner side of the bilayer.  相似文献   

18.
Total phospholipid contents and the individual phospholipid components of human adult and fetal spleens from 17--18 and 23--24 week's pregnancies composition of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, diphosphatidylglycerol and phosphatidic acid studied in human adult, 17--18 and 23--24 week fetal spleens.  相似文献   

19.
The phospholipid composition has been determined for placental microsomes from 11 normal and eight pregnancies complicated by steroid sulphatase deficiency. Phosphatidylcholine, phosphatidylethanolamine and sphingomyelin were found to be the major phospholipids of normal placental microsomes, comprising respectively 41.6 +/- 4.6% (mean +/- SD). 30 +/- 5.7% and 22.5 +/- 4.9% of the total phospholipid content. There was no correlation between the steroid sulphatase activity of the microsomes and the content of any of the three phospholipids. Though their contents were significantly decreased. (P less than 0.001) phosphatidylcholine, phosphatidylethanolamine and sphingomyelin similarly constituted the major portion of the total phospholipids in sulphatase deficient microsomes, representing 36 +/- 4.2%, 34 +/- 6.1% and 22.4 +/- 6.7% respectively. Only the percentage of phosphatidylcholine was significantly different (P less than 0.02) from normal microsomes. The results show that the decreased phospholipid content of steroid sulphatase deficient placental microsomes reflects a lower content of all major classes of phospholipids, particularly phosphatidylcholine.  相似文献   

20.
We studied the effects of immersion of guinea-pig taenia coli strips in potassium-free media on arachidonate stores and other lipid fractions. Control studies obtained with the strips in Krebs solution showed that greater than 97% of arachidonate was found esterified in phospholipid with the following distribution: phosphatidylethanolamine greater than phosphatidylcholine greater than phosphatidylserine plus phosphatidylinositol. 30 min incubation of the strips with [3H]arachidonate complexed to albumin resulted in incorporation of this isotope into phospholipid and neutral lipid fractions, phosphatidylcholine greater than neutral lipid greater than phosphatidylserine plus phosphatidylinositol greater than phosphatidylethanolamine. 30 min incubations with 32PO4(2-)-resulted in an isotope incorporation into phospholipids, phosphatidylcholine greater than phosphatidylserine plus phosphatidylinositol greater than phosphatidylethanolamine. After 'loading' with [3H]arachidonate and 32P, placing the strips in potassium-free media caused the following: there was an increased release of [3H]arachidonate from the tissue into the bathing solution. [3H]Arachidonate and 32P radioactivity in phosphatidylinositol fell without a change in phosphatidylinositol content. [3H]Arachidonate and 32P radioactivity in other phospholipid fractions was unchanged. Arachidonate specific activity fell and arachidonate content increased in the phosphatidylserine plus phosphatidylinositol fraction. [3]Arachidonate in neutral lipid did not change significantly. We conclude that exposure of taenia coli to potassium-free media activates turnover of phosphatidylinositol, which results in release of arachidonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号