首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We purified an inhibitor of oriC plasmid replication and determined that it is a truncated form of ribosomal protein L2 evidently lacking 59 amino acid residues from the C-terminal region encoded by rplB. We show that this truncated form of L2 or mature L2 physically interacts with the N-terminal region of DnaA to inhibit initiation from oriC by apparently interfering with DnaA oligomer formation, and the subsequent assembly of the prepriming complex on an oriC plasmid. Both forms of L2 also inhibit the unwinding of oriC by DnaA. These in vitro results raise the possibility that one or both forms of L2 modulate DnaA function in vivo to regulate the frequency of initiation.  相似文献   

2.
3.
The DNA-binding domain of the Escherichia coli DnaA protein is represented by the 94 C-terminal amino acids (domain 4, aa 374-467). The isolated DNA-binding domain acts as a functional repressor in vivo, as monitored with a mioC:lacZ translational fusion integrated into the chromosome of the indicator strain. In order to identify residues required for specific DNA binding, site-directed and random PCR mutagenesis were performed, using the mioC:lacZ construct for selection. Mutations defective in DNA binding were found all over the DNA-binding domain with some clustering in the basic loop region, within presumptive helix B and in a highly conserved region at the N-terminus of presumptive helix C. Surface plasmon resonance (SPR) analysis revealed different binding classes of mutant proteins. No or severely reduced binding activity was demonstrated for amino acid substitutions at positions R399, R407, Q408, H434, T435, T436 and A440. Altered binding specificity was found for mutations in a 12 residue region close to the N-terminus of helix C. The defects of the classical temperature sensitive mutants dnaA204, dnaA205 and dnaA211 result from instability of the proteins at higher temperatures. dnaX suppressors dnaA71 and dnaA721 map to the region close to helix C and bind DNA non-specifically.  相似文献   

4.
In wild-type Escherichia coli cells, initiation of DNA replication is tightly coupled to cell growth. In slowly growing dnaA204 (Ts) mutant cells, the cell mass at initiation and its variability is increased two- to threefold relative to wild type. Here, we show that the DnaA protein concentration was two- to threefold lower in the dnaA204 mutant compared with the wild-type strain. The reason for the DnaA protein deficiency was found to be a rapid degradation of the mutant protein. Absence of SeqA protein stabilized the DnaA204 protein, increased the DnaA protein concentration and normalized the initiation mass in the dnaA204 mutant cells. During rapid growth, the dnaA204 mutant displayed cell cycle parameters similar to wild-type cells as well as a normal DnaA protein concentration, even though the DnaA204 protein was highly unstable. Apparently, the increased DnaA protein synthesis compensated for the protein degradation under these growth conditions, in which the doubling time was of the same order of magnitude as the half-life of the protein. Our results suggest that the DnaA204 protein has essentially wild-type activity at permissive temperature but, as a result of instability, the protein is present at lower concentration under certain growth conditions. The basis for the stabilization in the absence of SeqA is not known. We suggest that the formation of stable DnaA-DNA complexes is enhanced in the absence of SeqA, thereby protecting the DnaA protein from degradation.  相似文献   

5.
DnaA is a replication initiator protein that is conserved among bacteria. It plays a central role in the initiation of DNA replication. In order to monitor its behavior in living Escherichia coli cells, a nonessential portion of the protein was replaced by a fluorescent protein. Such a strain grew normally, and flow cytometry data suggested that the chimeric protein has no substantial loss of the initiator activity. The initiator was distributed all over the nucleoid. Furthermore, a majority of the cells exhibited certain distinct foci that emitted bright fluorescence. These foci colocalized with the replication origin (oriC) region and were brightest during the period spanning the initiation event. In cells that had undergone the initiation, the foci were enriched in less intense ones. In addition, a significant portion of the oriC regions at this cell cycle stage had no colocalized DnaA-enhanced yellow fluorescent protein (EYFP) focus point. It was difficult to distinguish the initiator titration locus (datA) from the oriC region. However, involvement of datA in the initiation control was suggested from the observation that, in ΔdatA cells, DnaA-EYFP maximally colocalized with the oriC region earlier in the cell cycle than it did in wild-type cells and oriC concentration was increased.Initiation of DNA replication is highly regulated to coordinate with cell proliferation. It begins with a series of events in which the replication machinery is assembled at the replication origin of the chromosomal DNA (15, 26, 28, 38). Central to this process are the initiator proteins that bind to the origin of replication and eventually lead to the unwinding of the origin and to helicase loading on the unwound region. Previous biochemical studies and recent structural studies of the bacterial initiator protein DnaA have proposed the molecular mechanism of the action of ATP-DnaA in forming a large oligomeric complex to remodel the unique origin, oriC, and trigger duplex melting (12, 26). However, it is still not clear how the timing of initiation is controlled so that it takes place at a fixed time in the cell cycle. It has been reported that a basal level of DnaA molecules is bound by high-affinity DnaA binding sites (DnaA boxes R1, R2, and R4) at oriC throughout the cell cycle (9, 37). It is also suggested that noncanonical ATP-DnaA binding sites within oriC are occupied at elevated levels of the initiator molecules prior to the initiation event (18, 25). Thus, regulation of the activity and availability of DnaA is an important factor for the initiation control.At least three schemes are known to prevent untimely initiations in Escherichia coli. First, oriC is subject to sequestration, a process that prevents reinitiation, possibly by blocking ATP-DnaA from binding to newly replicated oriC (8, 24). E. coli oriC contains 11 GATC sites that are normally methylated on both strands by Dam methyltransferase. Immediately after passage of the replication fork, GATC sites are in a hemimethylated state, with the newly synthesized strands remaining unmethylated. SeqA binds specifically to such sites and, at oriC, protects these regions from reinitiation for about one-third of the cell cycle (6, 39). Second, in a process termed regulatory inactivation of DNA (RIDA), ATP-DnaA molecules are converted to an inactive ADP-bound form after initiation by the combined action of a β subunit of DNA polymerase III holoenzyme and Hda (16, 17). Newly synthesized DnaA molecules are able to bind ATP for the next initiation event, since its cellular concentration is much higher than that of ADP. ATP-DnaA is also regenerated from the inactive ADP-DnaA later in the cell cycle (21). Finally, the chromosomal segment datA serves to reduce the level of free DnaA protein by titrating a large number of DnaA molecules after replication of the site close to oriC (20).Cytological studies would be very useful for developing our understanding of the regulation mechanisms associated with the initiation step. In the present study, we tagged E. coli DnaA with a fluorescent protein in order to monitor its behavior in live cells. Microscopic observation revealed that DnaA is distributed all over the nucleoid. Remarkably, the majority of cells bore distinct foci that emitted brighter fluorescence against a weak fluorescent background on the nucleoid. We analyzed the behavior of these foci during the cell cycle with respect to oriC and datA.  相似文献   

6.
7.
C Weigel  A Schmidt  B Rückert  R Lurz    W Messer 《The EMBO journal》1997,16(21):6574-6583
The formation of nucleoprotein complexes between the Escherichia coli initiator protein DnaA and the replication origin oriC was analysed in vitro by band-shift assays and electron microscopy. DnaA protein binds equally well to linear and supercoiled oriC substrates as revealed by analysis of the binding preference to individual DnaA boxes (9-mer repeats) in oriC, and by a competition band-shift assay. DnaA box R4 (oriC positions 260-268) binds DnaA preferentially and in the oriC context with higher affinity than expected from its binding constant. This effect depends on oriC positions 249 to 274, is enhanced by the wild-type sequence in the DnaA box R3 region, but is not dependent on Dam methylation or the curved DNA segment to the right of oriC. DnaA binds randomly to the DnaA boxes R1, M, R2 and R3 in oriC with no apparent cooperativity: the binding preference of DnaA to these sites was not altered for templates with mutated DnaA box R4. In the oriC context, DnaA box R1 binds DnaA with lower affinity than expected from its binding constant, i.e. the affinity is reduced to approximately that of DnaA box R2. Higher protein concentrations were required to observe binding to DnaA box M, making this low-affinity site a novel candidate for a regulatory dnaA box.  相似文献   

8.
9.
Initiation of chromosome replication in Escherichia coli is governed by the interaction of the initiator protein DnaA with the replication origin oriC. Here we present evidence that homo-oligomerization of DnaA via its N-terminus (amino acid residues 1-86) is also essential for initiation. Results from solid-phase protein-binding assays indicate that residues 1-86 (or 1-77) of DnaA are necessary and sufficient for self interaction. Using a 'one-hybrid-system' we found that the DnaA N-terminus can functionally replace the dimerization domain of coliphage lambda cl repressor: a lambdacl-DnaA chimeric protein inhibits lambda plasmid replication as efficiently as lambdacI repressor. DnaA derivatives with deletions in the N-terminus are incapable of supporting chromosome replication from oriC, and, conversely, overexpression of the DnaA N-terminus inhibits initiation in vivo. Together, these results indicate that (i) oligomerization of DnaA N-termini is essential for protein function during initiation, and (ii) oligomerization does not require intramolecular cross-talk with the nucleotide-binding domain III or the DNA-binding domain IV. We propose that E. coli DnaA is composed of largely independent domains - or modules - each contributing a partial, though essential, function to the proper functioning of the 'holoprotein'.  相似文献   

10.
The initiator protein DnaA has several unique DNA-binding features. It binds with high affinity as a monomer to the nonamer DnaA box. In the ATP form, DnaA binds cooperatively to the low-affinity ATP-DnaA boxes, and to single-stranded DNA in the 13mer region of the origin. We have carried out an extensive mutational analysis of the DNA-binding domain of the Escherichia coli DnaA protein using mutagenic PCR. We analyzed mutants exhibiting more or less partial activity by selecting for complementation of a dnaA(Ts) mutant strain at different expression levels of the new mutant proteins. The selection gave rise to 30 single amino acid substitutions and, including double substitutions, more than 100 mutants functional in initiation of chromosome replication were characterized. The analysis indicated that all regions of the DNA-binding domain are involved in DNA binding, but the most important amino acid residues are located between positions 30 and 80 of the 94 residue domain. Residues where substitutions with non-closely related amino acids have very little effect on protein function are located primarily on the periphery of the 3D structure. By comparison of the effect of substitutions on the activity for initiation of replication with the activity for repression of the mioC promoter, we identified residues that might be involved specifically in the cooperative interaction with ATP-DnaA boxes.  相似文献   

11.
The molecular engine that drives bidirectional replication fork movement from the Escherichia coli replication origin (oriC) is the replicative helicase, DnaB. At oriC, two and only two helicase molecules are loaded, one for each replication fork. DnaA participates in helicase loading; DnaC is also involved, because it must be in a complex with DnaB for delivery of the helicase. Since DnaA induces a local unwinding of oriC, one model is that the limited availability of single-stranded DNA at oriC restricts the number of DnaB molecules that can bind. In this report, we determined that one DnaB helicase or one DnaB-DnaC complex is bound to a single-stranded DNA in a biologically relevant DNA replication system. These results indicate that the availability of single-stranded DNA is not a limiting factor and support a model in which the site of entry for DnaB is altered so that it cannot be reused. We also show that 2-4 DnaA monomers are bound on the single-stranded DNA at a specific site that carries a DnaA box sequence in a hairpin structure.  相似文献   

12.
13.
Plasmids carrying the intact Bacillus subtilis dnaA-like gene and two reciprocal hybrids between the B. subtilis and Escherichia coli dnaA genes were constructed. None of the plasmids could transform wild-type E. coli cells unless the cells contained surplus E. coli DnaA protein (DnaAEc). A dnaA (Ts) strain integratively suppressed by the plasmid R1 origin could be transformed by plasmids carrying either the B. subtilis gene (dnaABs) or a hybrid gene containing the amino terminus of the E. coli gene and the carboxyl terminus of the B. subtilis gene (dnaAEc/Bs). In cells with surplus E. coli DnaA protein, expression of the E. coli dnaA gene was derepressed by the B. subtilis DnaA protein and by the hybrid DnaAEc/Bs protein, whereas it was strongly repressed by the reciprocal hybrid protein DnaABs/Ec. The plasmids carrying the different dnaA genes probably all interfere with initiation of chromosome replication in E. coli by decreasing the E. coli DnaA protein concentration to a limiting level. The DnaABs and the DnaAEc/Bs proteins effect this decrease possibly by forming inactive oligomeric proteins, while the DnaABs/Ec protein may decrease dnaAEc gene expression.  相似文献   

14.
Summary Flow cytometry was used to study initiation of DNA replication in Escherichia coli K12 after induced expression of a plasmid-borne dnaA + gene. When the dnaA gene was induced from either the plac or the pL promoter initiation was stimulated, as evidenced by an increase in the number of origins and in DNA content per mass unit. During prolonged growth under inducing conditions the origin and DNA content per mass unit were stabilized at levels significantly higher than those found before induction or in similarly treated control cells. The largest increase was observed when using the stronger promoter pL compared to plac. Synchrony of initiation was reasonably well maintained with elevated DnaA protein concentrations, indicating that simultaneous initiation of all origins was still preferred under these conditions. A reduced rate of replication fork movement was found in the presence of rifampin when the DnaA protein was overproduced. We conclude that increased synthesis levels or increased concentrations of the DnaA protein stimulate initiation of DNA replication. The data suggest that the DnaA protein may be the limiting factor for initiation under normal physiological conditions.  相似文献   

15.
The DnaA protein determines the initiation mass of Escherichia coli K-12   总被引:40,自引:0,他引:40  
DNA replication was studied in a dnaA(Ts) strain containing a plasmid with the dnaA+ gene under plac control. At 42 degrees C, initiation of DNA replication was totally dependent upon the gratuitous inducer isopropyl beta-D-thiogalactopyranoside (IPTG). Flow cytometric measurements showed that at 13% induction of the lac promoter the growth rate, cell size, DNA content, and timing of initiation of DNA replication were indistinguishable from those observed in a wild-type control cell. Higher levels of induction resulted in initiations earlier in the cell cycle and a corresponding increase in the time from initiation to termination. We conclude that the concentration of DnaA protein determines the time of initiation and thereby the initiation mass. With an induction level equal to or above 13%, the synchrony of multiple initiations within one cell was close to that found in a wild-type control cell, showing that a cyclic variation in DnaA content is not necessary for a high degree of synchrony.  相似文献   

16.
The dnaA204 mutant, one of the so-called irreversible dnaA mutants which cannot reinitiate chromosome replication upon a shift from non-permissive to permissive growth temperature in the absence of protein synthesis, was reinvestigated using flow cytometry and marker frequency analysis. In a temperature downshift experiment and in the presence of protein synthesis the dnaA204 mutant reinitiates chromosome replication very fast. Using a lac promoter-controlled wild type or a dnaA204 mutant gene carried on a plasmid, we have observed instantaneous initiation of replication when synthesis of DnaA protein is induced in the dnaA204 mutant at 42δC. The data indicate that the dnaA204 mutant after a shift to 42δC still contains functional DnaA protein, but that the activity level is below the initiation threshold. Thus, after synthesis of very small amounts of additional DnaA protein, initiation occurs very fast both after a shift to 30δC, and after induction of DnaA protein synthesis at 42 C. A model describing the processing of DnaA protein in mutants and in the wild type Is presented.  相似文献   

17.
18.
Escherichia coli DnaA protein initiates DNA replication from the chromosomal origin, oriC, and regulates the frequency of this process. Structure-function studies indicate that the replication initiator comprises four domains. Based on the structural similarity of Aquifex aeolicus DnaA to other AAA+ proteins that are oligomeric, it was proposed that Domain III functions in oligomerization at oriC (Erzberger, J. P., Pirruccello, M. M., and Berger, J. M. (2002) EMBO J. 21, 4763-4773). Because the Box VII motif within Domain III is conserved among DnaA homologues and may function in oligomerization, we substituted conserved Box VII amino acids of E. coli DnaA with alanine by site-directed mutagenesis to examine the role of this motif. All mutant proteins are inactive in initiation from oriC in vivo and in vitro, but they support RK2 plasmid DNA replication in vivo. Thus, RK2 requires only a subset of DnaA functions for plasmid DNA replication. Biochemical studies on a mutant DnaA carrying an alanine substitution at arginine 281 (R281A) in Box VII show that it is inactive in in vitro replication of an oriC plasmid, but this defect is not from the failure to bind to ATP, DnaB in the DnaB-DnaC complex, or oriC. Because the mutant DnaA is also active in the strand opening of oriC, whereas DnaB fails to bind to this unwound region, the open structure is insufficient by itself to load DnaB helicase. Our results show that the mutant fails to form a stable oligomeric DnaA-oriC complex, which is required for the loading of DnaB.  相似文献   

19.
20.
Initiation of DNA replication at the Escherichia coli chromosomal origin, oriC, occurs through an ordered series of events that depend first on the binding of DnaA protein, the replication initiator, to DnaA box sequences within oriC followed by unwinding of an AT-rich region near the left border. The prepriming complex then forms, involving the binding of DnaB helicase at oriC so that it is properly positioned at each replication fork. We assembled and isolated the prepriming complexes on an oriC plasmid, then determined the stoichiometries of proteins in these complexes by quantitative immunoblot analysis. DnaA protein alone binds to oriC with a stoichiometry of 4-5 monomers per oriC DNA. In the prepriming complex, the stoichiometries are 10 DnaA monomers and 2 DnaB hexamers per oriC plasmid. That only two DnaB hexamers are bound, one for each replication fork, suggests that the binding of additional molecules of DnaA in forming the prepriming complex restricts the loading of additional DnaB hexamers that can bind at oriC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号