首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is postulated that the burst of oxygen consumption and H2O2 formation following phagocytosis by polymorphonuclear leukocytes is due to the action of an oxidase located in the plasma membrane. The cyanide-resistant oxygen consumption of resting polymorphonuclear leukocytes was also found to be stimulated by 2,4-dichlorophenol with H2O2 being the sole product formed. NADH and NADPH added to the leukocytes greatly enhanced the oxygen consumption and were oxidized in the process without penetrating the leukocytes. Mn2+ stimulated this oxidase activity. The apparent Km values for added NADH and NADPH were 50 and 40 μm, respectively, with a V of 300 nmol/mg protein/min. A stoichiometry of 1 mol H2O2 formed per mol of NAD(P)H was found. Whilst the oxidase is similar to the oxidase properties of a peroxidase, myeloperoxidase is not responsible for the activity.  相似文献   

2.
The stimulation of polymorphonuclear leukocytes with bacteria or digitonin causes protons to be released into the reaction medium at the same time as the respiratory burst. Although lactic acid is released from the cells due to the stimulated metabolic activity, proton release was not due to lactic acid accumulation as fluoride markedly inhibited lactic acid accumulation in untreated cells within 5 minutes of incubation and a rapid proton release and superoxide anion production occurred after lactate production had ceased. The proton releasing mechanism, however, is closely linked with the activation of the plasma membrane NAD(P)H oxidase since the proton release is depressed only when the activation mechanism and/or the oxidase is inhibited.  相似文献   

3.
在人参(Panax ginseng C.A.Meyer)悬浮细胞质膜上测出了NAD(P)H氧化酶活性。这类NAD(P)H氧化酶活性可以被金瓜炭疽细胞壁激发子(Cle)诱导。Cle处理还能诱导人参悬浮细胞的氧进发、促进人参悬浮细胞的皂苷合成、提高苯丙氨酸解氨酶(PAL)的活力、以及诱导查尔式酮酶(CHS)的累积和细胞壁上抗性相关蛋白基因脯氨酸富裕蛋白基因hrgp(Hydroxyprolin-rich glycoproleins)的表达。当用哺乳动物白细胞质膜NADPH氧化酶的特异性抑制剂二亚苯基碘(Diphenylene iodonium,DPI)与奎吖因(quinacrine)预处理人参悬浮细胞30 min 后,Cle诱导的H2O2释放与Cle激活的质膜NAD(P)H氧化酶活性被抑制,同时Cle诱导的PAL活性及CHS的积累下降,皂苷合成与hrgp的表达被抑制。由此推测:人参细胞质膜NAD(P)H氧化酶与哺乳动物白细胞质膜NADPH氧化酶有很大的相似性。在Cle激发人参悬浮细胞产生氧进发的过程中,NAD(P)H氧化酶活性被诱导从而导致H2O2的产生,H2O2作为第二信使,激活苯丙氨酸途径,诱发人参皂苷的合成及hrgp防御基因的表达。这一过程中还涉及到Ca2+内流,胞内Ca2+浓度的升高,蛋白磷酸化与去磷酸化。人参细胞质膜NAD(P)H氧化酶在人参细胞对Cle的反应过程中起一种介导作用。因此可能存在由Cle刺激,NAD(P)H氧化酶被诱导,H2O2释放,到人  相似文献   

4.
O. Pantoja  C. M. Willmer 《Planta》1988,174(1):44-50
Redox systems have been reported in the plasma membrane of numerous cell types and in cells from various species of higher plant. A search for a redox system in the plasma membrane of guard cells was therefore made in efforts to explain how blue light stimulates stomatal opening, a process which is coupled to guard cell H+ efflux and K+ uptake. The rates of O2 uptake by intact guard-cell protoplasts (GCP) of Commelina communis L., in the dark, were monitored in the presence of NAD(P)H since the stimulation of O2 consumption by reduced pyridine nucleotides is used as an indicator of the presence of a redox system in the plasma membrane. Oxygen consumption by intact GCP increased two- to threefold in the presence of NAD(P)H. The NAD(P)H-stimulation of O2 uptake was dependent on Mn2+ and was stimulated 10- to 15-fold by salicylhydroxamic acid (SHAM). Catalase, cyanide and ascorbate, a superoxide scavenger, all individually inhibited the SHAM-stimulated O2 uptake. These are all characteristics of peroxidase activity although some of these features have been used to imply the presence of a redox system located in the plasma membrane. High levels of peroxidase activity (using guaiacol as a substrate) were also detected in the GCP and in the supernatant. The activity in the supernatant increased with time indicating that peroxidase was being excreted by the protoplasts. The properties of O2 uptake by the incubation medium after separation from the protoplasts were similar to those of the protoplast suspension. It is concluded that our observations can be more readily explained by peroxidase activity associated with the plasma membrane and secreted by the GCP than by the presence of a redox system in the plasma membrane of the protoplasts.Abbreviations EDTA ethylenediaminetetraacetic acid - GCP guard cell protoplast - Mes 2-(N-morpholino)ethanesulphonic acid - SHAM salicylhydroxamic acid  相似文献   

5.
Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose‐stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free‐albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI—diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase‐I (CPT‐I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47PHOX translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up‐regulated the protein content of p47PHOX and the mRNA levels of p22PHOX, gp91PHOX, p47PHOX, proinsulin and the G protein‐coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate. J. Cell. Physiol. 226: 1110–1117, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Summary The NAD(P)H:quinone oxidoreductase activity of tobacco leaves is catalyzed by a soluble flavoprotein [NAD(P)H-QR] and membrane-bound forms of the same enzyme. In particular, the activity associated with the plasma membrane cannot be released by hypoosmotic and salt washing of the vesicles, suggesting a specific binding. The products of the plasma-membrane-bound quinone reductase activity are fully reduced hydroquinones rather than semi-quinone radicals. This peculiar kinetic property is common with soluble NAD(P)H-QR, plasma-membrane-bound NAD(P)H:quinone reductase purified from onion roots, and animal DT-diaphorase. These and previous results demonstrate that soluble and plasma-membrane-bound NAD(P)H:quinone reductases are strictly related flavo-dehydrogenases which seem to replace DT-diaphorase in plant tissues. Following purification to homogeneity, the soluble NAD(P)H-QR from tobacco leaves was digested. Nine peptides were sequenced, accounting for about 50% of NAD(P)H-QR amino acid sequence. Although one peptide was found homologous to animal DT-diaphorase and another one to plant monodehydroascorbate reductase, native NAD(P)H-QR does not seem to be structurally similar to any known flavoprotein.Abbreviations MDAR monodehydroascorbate reductase - PM plasma membrane - NAD(P)H-QR NAD(P)H:quinone oxidoreductase - DPI diphenylene iodonium - DQ duroquinone - CoQ2 coenzyme Q2  相似文献   

7.
The purpose of the present study was to determine the subcellular localization of NAD(P)H oxidase, a reactive oxygen species (ROS)-producing enzyme, in the human placenta at various gestational ages. Ultrastructural enzyme histochemistry for NAD(P)H oxidase, using cerium as a capturing agent, was carried out. Placentas from patients with severe preeclampsia and patients who delivered infants with fetal growth restriction (FGR) were also studied. Electron-dense precipitates indicating NAD(P)H oxidase activity were visible in the microvillous membranes of the placentas, especially on the surface plasma membrane of the syncytiotrophoblast microvilli, after 25 weeks of gestation. The distribution pattern and enzyme intensities were apparently the same among normal, preeclamptic, and FGR placentas. Cytochemical control experiments ensured the specific detection of NAD(P)H oxidase activity. These observations indicated that syncytiotrophoblasts possessed NAD(P)H oxidase activity, and thus ROS-generating activity. Placental NAD(P)H oxidase may play a role in placental lipid peroxidation and the placental defense mechanism.  相似文献   

8.
The production of superoxide radical (O2) was studiedin plasma membrane vesicles isolated by aqueous polymer two-phasepartitioning from roots of zinc-sufficient and zinc-deficientbean (Phaseolus vulgaris L. cv. Prélude) plants. Thetwo populations of vesicles were highly enriched in plasma membraneand had similar composition as evidenced by the specific membranemarker enzymes. Vesicles from zinc-deficient roots showed higherrates of NAD(P)H oxidation compared to vesicles from zinc-sufficientplants. The NAD(P)H-dependent formation of O2 in plasmamembrane vesicles was also highly increased by zinc deficiency.For both activities, a higher response to zinc deficiency wasobserved when NADPH was used as electron source. Re-supply ofzinc to deficient plants for 24 h substantially decreased therates of NAD(P)H oxidation and 02 production in isolatedvesicles. The NADPH-dependent O2 generation was stronglystimulated by FAD and showed a high pH optimum; it was scarcelyaffected by Triton X-100 or even inhibited in the presence ofFAD and was almost insensitive to Antimycin A. The results suggest the presence at the plasma membrane of beanroots of an O2 generating activity, preferentially utilizingNADPH, which is affected by the zinc nutritional status of theplant. This finding, together with previous observations oncytosolic and microsomal fractions prepared from zinc-deficientroots of different plants, is consistent with a role of zincin membrane stabilization by controlling the level of oxidizingO2 species. Key words: NAD(P)H oxidase, superoxide radical, plasma membrane, zinc deficiency  相似文献   

9.
Yun MR  Im DS  Lee JS  Son SM  Sung SM  Bae SS  Kim CD 《Life sciences》2006,78(22):2608-2614
Endothelial expression of E-selectin is enhanced in diabetic patients with retinopathy, however, the underlying mechanisms are unclear. Therefore, this study was aimed to determine if endothelial expression of E-selectin is stimulated with serum from type 2 diabetic patients with retinopathy, and whether this process is related to NAD(P)H oxidase-derived oxidative stress. Serum was obtained from type 2 diabetic patients with (T2DR) or without (T2DM) retinopathy, and age-matched non-diabetic healthy person (Control). Serum was added to in vitro-grown human coronary artery endothelial cells (HCAEC), after which E-selectin expression, reactive oxygen species (ROS) production, and NAD(P)H oxidase activity were measured. Serum from T2DR induced a significantly higher expression of E-selectin than serum from T2DM and control in association with an enhanced production of ROS in HCAEC. T2DR serum enhanced E-selectin expression in a ROS-dependent manner since this process was significantly attenuated not only by tiron (1 mM), a superoxide scavenger, but also by DPI (10 micromol/L) and apocynin (100 micromol/L), inhibitors of NAD(P)H oxidase. Furthermore, the activity of NADH oxidase was markedly increased by T2DR serum, and this was accompanied by the enhanced membrane translocation of p47phox, a cytosolic subunit of NAD(P)H oxidase. These findings suggest that serum from T2DR induced up-regulation of E-selectin expression in HCAEC, and this process might be dependent on activation of endothelial NADH oxidase via an enhanced membrane translocation of p47phox.  相似文献   

10.
Angiogenesis, a process of new blood vessel growth, contributes to various pathophysiologies such as cancer, diabetic retinopathy and atherosclerosis. Accumulating evidence suggests that cardiovascular diseases are associated with increased oxidative stress in blood vessels. Reactive oxygen species (ROS) such as superoxide and H2O2 cause blood vessels to thicken, produce inflammation in the vessel wall, and thus are regarded as “risk factors” for vascular disease, whereas ROS also act as signaling molecules in many aspects of growth factor-mediated physiological responses. Recent reports suggest that ROS play an important role in angiogenesis; however, its underlying molecular mechanisms remain unknown. Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell (EC) proliferation and migration primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). VEGF binding initiates tyrosine phosphorylation of KDR, which results in activation of downstream signaling enzymes including ERK1/2, Akt and eNOS, which contribute to angiogenic-related responses in EC. Importantly, the major source of ROS in EC is a NAD(P)H oxidase and EC express all the components of phagocytic NAD(P)H oxidase including gp91phox, p22phox, p47phox, p67phox and the small G protein Rac1. We have recently demonstrated that ROS derived from NAD(P)H oxidase are critically important for VEGF signaling in vitro and angiogenesis in vivo. Furthermore, a peptide hormone, angiotensin II, a major stimulus for vascular NAD(P)H oxidase, also plays an important role in angiogenesis. Because EC migration and proliferation are primary features of the process of myocardial angiogenesis, we would like to focus on the recent progress that has been made in the emerging area of NAD(P)H oxidase-derived ROS-dependent signaling in ECs, and discuss the possible roles in angiogenesis. Understanding these mechanisms may provide insight into the components of NAD(P)H oxidase as potential therapeutic targets for treatment of angiogenesis-dependent diseases such as cancer and atherosclerosis and for promoting myocardial angiogenesis in ischemic heart diseases. (Mol Cell Biochem 264: 85–97, 2004)  相似文献   

11.
Chlamydia trachomatis is an obligate intracellular bacterium that alternates between two metabolically different developmental forms. We performed fluorescence lifetime imaging (FLIM) of the metabolic coenzymes, reduced nicotinamide adenine dinucleotides [NAD(P)H], by two-photon microscopy for separate analysis of host and pathogen metabolism during intracellular chlamydial infections. NAD(P)H autofluorescence was detected inside the chlamydial inclusion and showed enhanced signal intensity on the inclusion membrane as demonstrated by the co-localization with the 14-3-3β host cell protein. An increase of the fluorescence lifetime of protein-bound NAD(P)H [τ2-NAD(P)H] inside the chlamydial inclusion strongly correlated with enhanced metabolic activity of chlamydial reticulate bodies during the mid-phase of infection. Inhibition of host cell metabolism that resulted in aberrant intracellular chlamydial inclusion morphology completely abrogated the τ2-NAD(P)H increase inside the chlamydial inclusion. τ2-NAD(P)H also decreased inside chlamydial inclusions when the cells were treated with IFNγ reflecting the reduced metabolism of persistent chlamydiae. Furthermore, a significant increase in τ2-NAD(P)H and a decrease in the relative amount of free NAD(P)H inside the host cell nucleus indicated cellular starvation during intracellular chlamydial infection. Using FLIM analysis by two-photon microscopy we could visualize for the first time metabolic pathogen-host interactions during intracellular Chlamydia trachomatis infections with high spatial and temporal resolution in living cells. Our findings suggest that intracellular chlamydial metabolism is directly linked to cellular NAD(P)H signaling pathways that are involved in host cell survival and longevity.  相似文献   

12.
A multifunctional cell surface protein with NADH oxidase (NOX) activity and capable of oxidizing hydroquinones is located at the exterior of the cell and is shed in soluble form into sera. The oxidase appears to function as a terminal oxidase of a trans plasma membrane electron transport chain consisting of a NAD(P)H-ubiquinone reductase at the cytosolic membrane surface, possibly a b-type cytochrome, ubiquinone and the oxidase. Hyperactivity or conditions that interrupt ordered 2H+ + 2e- transport from NAD(P)H or hydroquinone to molecular oxygen and other acceptors at the external cell surface may result in the generation of superoxide. The latter may serve to propagate aging-related redox changes both to adjacent cells and circulating blood components. A circulating NOX activity form associated with aging and the reduction of cytochrome c by sera of aged patients that is partially inhibited by ubiquinone are described.  相似文献   

13.
NAD(P)H oxidase, the main source of reactive oxygen species in vascular cells, is known to be regulated by redox processes and thiols. However, the nature of thiol-dependent regulation has not been established. Protein disulfide isomerase (PDI) is a dithiol/disulfide oxidoreductase chaperone of the thioredoxin superfamily involved in protein processing and translocation. We postulated that PDI regulates NAD(P)H oxidase activity of rabbit aortic smooth muscle cells (VSMCs). Western blotting confirmed robust PDI expression and shift to membrane fraction after incubation with angiotensin II (AII, 100 nm, 6 h). In VSMC membrane fraction, PDI antagonism with bacitracin, scrambled RNase, or neutralizing antibody led to 26-83% inhibition (p < 0.05) of oxidase activity. AII incubation led to significant increase in oxidase activity, accompanied by a 6-fold increase in PDI refolding isomerase activity. AII-induced NAD(P)H oxidase activation was inhibited by 57-71% with antisense oligonucleotide against PDI (PDIasODN). Dihydroethidium fluorescence showed decreased superoxide generation due to PDIasODN. Confocal microscopy showed co-localization between PDI and the oxidase subunits p22(phox), Nox1, and Nox4. Co-immunoprecipitation assays supported spatial association between PDI and oxidase subunits p22(phox), Nox1, and Nox4 in VSMCs. Moreover, in HEK293 cells transfected with green fluorescent protein constructs for Nox1, Nox2, and Nox4, each of these subunits co-immunoprecipitated with PDI. Akt phosphorylation, a known downstream pathway of AII-driven oxidase activation, was significantly reduced by PDIasODN. These results suggest that PDI closely associates with NAD(P)H oxidase and acts as a novel redox-sensitive regulatory protein of such enzyme complex, potentially affecting subunit traffic/assembling.  相似文献   

14.
In order to confirm that mechanosensitive Ca2+ channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca2+ (Δ[Ca2+]c). However, the observed Δ[Ca2+]c decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (ΔE m) and stretching or compression of the plasma membrane. Significant ΔE m values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). ΔE m appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large ΔE m values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara.  相似文献   

15.
Podocytes are an important constituent of the glomerular filtration barrier. The function of these glomerular cells is affected by extracellular nucleotides through P2 receptors. The activation of P2 receptors may lead to the activation of NAD(P)H oxidase, the key enzyme in oxidative stress, with the intracellular pathways leading to intracellular ATP depletion associated with an increase in the intracellular AMP:ATP ratio. This deregulation of the energy balance activates AMP-activated protein kinase (AMPK) to restore energy homeostasis. We investigated whether P2 receptor activation influences NAD(P)H oxidase-dependent rate of superoxide anion (O2•−) generation and AMPK activity in cultured mouse podocytes. The rate of O2•− generation was measured by chemiluminescence and changes in AMPK activity were determined by immunoblotting against AMPKα-Thr172-P. The addition of 100 μM ATP induced a rapid and transient decrease in rate of O2•− generation and increased AMPK phosphorylation with maximal effects in the first minute (2.44 ± 0.09 versus 1.62 ± 0.06 nmol/mg protein/min, P < 0.05 and 0.64 ± 0.04 versus 0.97 ± 0.07, P < 0.05, respectively). Both parameters returned to control levels at 10 min. Suramin (300 μM, P2 receptor antagonist) and compound C (100 μM, AMPK inhibitor) completely, and STO-609 (25 μM, CaMKK-β inhibitor) partially, prevented ATP action in rate of O2•− generation and AMPK phosphorylation. Various ATP analogues (10 μM) mimicked the effects of ATP on rate of O2•− generation and AMPK phosphorylation. The data indicate that extracellular ATP, acting through P2 receptors upstream of CaMKK-β, modulates podocyte function through simultaneous effects on AMPK and NAD(P)H oxidase activities. This mechanism may play a role in restoring energy homeostasis after oxidative stress.  相似文献   

16.
One reason why pancreatic cancer is so aggressive and unresponsive to treatments is its resistance to apoptosis. We report here that reactive oxygen species (ROS) are a prosurvival, antiapoptotic factor in pancreatic cancer cells. Human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cells generated ROS, which was stimulated by growth factors (serum, insulin-like growth factor I, or fibroblast growth factor-2). Growth factors also stimulated membrane NAD(P)H oxidase activity in these cells. Both intracellular ROS and NAD(P)H oxidase activity were inhibited by antioxidants tiron and N-acetylcysteine and the inhibitor of flavoprotein-dependent oxidases, diphenylene iodonium, but not by inhibitors of various other ROS-generating enzymes. Using Rho(0) cells deficient in mitochondrial DNA, we showed that a nonmitochondrial NAD(P)H oxidase is a major source of growth factor-induced ROS in pancreatic cancer cells. Among proteins that have been implicated in NAD(P)H oxidase activity, MIA PaCa-2 and PANC-1 cells do not express the phagocytic gp91(phox) subunit but express several nonphagocytic oxidase (NOX) isoforms. Transfection with Nox4 antisense oligonucleotide inhibited NAD(P)H oxidase activity and ROS production in MIA PaCa-2 and PANC-1 cells. Inhibiting ROS with the antioxidants, Nox4 antisense, or MnSOD overexpression all stimulated apoptosis in pancreatic cancer cells as measured by internucleosomal DNA fragmentation, phosphatidylserine externalization, cytochrome c release, and effector caspase activation. The results show that growth factor-induced ROS produced by NAD(P)H oxidase (probably Nox4) protect pancreatic cancer cells from apoptosis. This mechanism may play an important role in pancreatic cancer resistance to treatment and thus represent a novel therapeutic target.  相似文献   

17.
An oxidase activity utilizing reduced nicotinamide adenine dinucleotide phosphate (NADPH) and producing H2O2 was observed in intact adipocytes of rat, as well as in the isolated plasma membranes of these cells. A stoichiometry of 1 mol of H2O2 production per mole of NADPH disappearance was found with isolated plasma membranes. Activation of this enzyme (R) was produced by pretreatment of cells with insulin, dithiothreitol, or sulfhydryl inhibitors, e.g., p-chloromercuribenzoate or tosyl-l-lysine chloromethyl ketone. All of these agents also stimulated glucose oxidation via the hexose monophosphate shunt. Activation of R was also observed with biologically active derivatives of insulin, e.g., proinsulin or desalanine insulin, but not with an inactive derivative, desoctapeptide insulin. The enzyme could not be activated by exposing the cells to membrane perturbants, e.g., hypotonic conditions or Triton X-100 (0.01–0.1%). The enzyme activity in the plasma membrane had a pH optimum at 6.0 and, from the Lineweaver-Burke plot, V was determined at 230 nmol and Km for NADPH was at 5.8 × 10?5, m. The activity remained unaltered in the presence of sodium azide or cyanide. Preincubation of adipocytes with insulin or SH reagents or direct addition of oxidants, e.g., H2O2, potassium ferricyanide, or phenazine methosulfate, to the membranes also caused inhibition of adenylate cyclase (AC). This enzyme activity could be restored in these preparations by adding thiols. It is suggested that inhibition of AC in whole cells in response to insulin may be caused by oxidation of its SH groups by the H2O2 generated from the activated NADPH oxidase. Reversal of this inhibition may involve cellular reducing equivalents. The evidence suggests that the plasma membrane enzymes, i.e., NADPH oxidase and adenylate cyclase, are controlled, in part, by the intracellular redox potential.  相似文献   

18.
Plasma membrane flavins and pterins are considered to mediate important physiological functions such as blue light photoperception and redox activity. Therefore, the presence of flavins and pterins in the plasma membrane of higher plants was studied together with NAD(P)H-dependent redox activities. Plasma membranes were isolated from the apical hooks of etiolated bean seedlings (Phaseolus vulgaris L. cv. Limburgse Vroege) by aqueous two-phase partitioning. Fluorescence spectroscopy revealed the presence of two chromophores. The first showed excitation maxima at 370 and 460 nm and an emission peak at 520 nm and was identified as a flavin. The second chromophore was probably a pterin molecule with excitation peaks at 290 and 350 nm and emission at 440 nm. Both pigments are considered intrinsic to the plasma membrane since they could not be removed by treatment with hypotonic media containing high salt and low detergent concentrations. The flavin concentration was estimated at about 500 pmol mg?1 protein. However difficulties were encountered in quantifying the pterin concentrations. Protease treatments indicated that the flavins were non-covalently bound to the proteins. Separation of the plasma membrane proteins after solubilisation by octylglucoside, on an ion exchange system (HPLC, Mono Q), resulted in a distinct protein fraction showing flavin and pterin fluorescence and NADH oxidoreductase activity. The flavin of this fraction was identified as flavin mononucleotide (FMN) by HPLC analysis. Other minor peaks of NADH:acceptor reductase activity were resolved on the column. The presence of distinct NAD(P)H oxidases at the plasma membrane was supported by nucleotide specificity and latency studies using intact vesicles. Our work demonstrates the presence of plasma membrane flavins as intrinsic chromophores, that may function in NAD(P)H-oxidoreductase activity and suggests the presence of plasma membrane bound pterins.  相似文献   

19.
The superoxide-generating respiratory burst oxidase is an integral membrane enzyme found in the plasma membrane of polymorphonuclear leukocytes (neutrophils). NADPH-dependent superoxide generation is seen in isolated plasma membranes and in their detergent extracts following activation of the intact cells with phorbol myristate acetate. We have herein examined the effects of phospholipids on the activity of the solubilized oxidase. Solubilization of plasma membranes with 0.5% each of Tween 20 plus deoxycholate resulted in an approximately 2-fold enhancement of activity. Inclusion of phospholipids in the extraction medium resulted in further activation. At 1.0 mg/ml the order of effectiveness was phosphatidylserine (PS) greater than cardiolipin greater than phosphatidylethanolamine greater than phosphatidylinositol; phosphatidylcholine and phosphorylated inositol lipids were not effective. The concentrations required for half-maximal activation by PS and phosphatidylethanolamine were 85 and 200 micrograms/ml, respectively. When PS was used at a maximally activating concentration (0.5 mg/ml), the activity was enhanced 3-5-fold. Detergent solubilization alone elevated the Km of the oxidase for NADPH from 68 microM in intact plasma membranes to 123 microM, but inclusion of PS with detergent restored the Km to near or below that seen in intact membranes. PS also increased the Vmax by a factor of 2-3, but had no effect on the pH optimum. A plot of the activity versus enzyme concentration was linear when membranes were used, but activity showed a quadratic dependence on concentration in solubilized membrane, with lower than expected activity at lower enzyme concentration. PS restored linearity of the concentration-activity plot. The activation by PS was not influenced by the addition of Ca2+, EGTA, or dioctanoylglycerol, indicating that activation was not dependent on protein kinase C. These results implicate phosphatidylserine as a direct effector of the NADPH-oxidase.  相似文献   

20.
NIH3T3 mouse fibroblasts generate reactive oxygen species (ROS) and release taurine following exposure to hypotonic medium and to isotonic medium containing the lipase activator melittin. The swelling-induced taurine release is potentiated by H2O2, the calmodulin antagonist W7, and ATP, but inhibited by the antioxidant butulated hydroxytoluene (BHT), the NAD(P)H oxidase inhibitor diphenylene iodonium (DI), and the iPLA2 inhibitor bromoenol lactone (BEL). The swelling-induced ROS production is also inhibited by BHT and BEL. H2O2 does not affect the volume set point for activation of the volume-sensitive taurine efflux. The 5-lipoxygenase (5-LO) inhibitor ETH 615-139 impairs the swelling-induced taurine efflux in the absence as well as in the presence of H2O2. The melittin-induced taurine release is, in analogy with the swelling-induced taurine release, potentiated by H2O2 and inhibited by BHT, DI, BEL, ETH 615-139 and anion channel blockers. Thus, swelling- and melittin-induced cell signalling and taurine release involve joint elements. The swelling-induced taurine efflux is potentiated by the protein tyrosine phosphatase inhibitor vanadate, and the potentiating effect of H2O2 and vanadate is impaired in the presence of protein tyrosine kinase inhibitor genistein. It is suggested that (i) iPLA2 and 5-LO activity is required for the swelling-induced activation of taurine efflux from NIH3T3 cells, (ii) ROS are produced subsequent to the PLA2 activation by the NAD(P)H oxidase complex, and (iii) ROS inhibit a protein tyrosine phosphatase (PTP1B) causing a potentiation of the swelling-induced taurine release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号