首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mouse bone marrow is barely capable of plaque-forming cell (PFC) activity during the primary response to sheep red blood cells (SRBC). However, during secondary-type responses, it becomes the major organ, containing IgM, IgG, and IgA PFC. In the present paper, the influence of splenectomy (Sx) upon the secondary bone marrow PFC response to SRBC was investigated. When previously primed mice were splenectomized just before the second intravenous (iv) injection of SRBC, the effect of Sx upon the height of the bone marrow PFC response was dependent on the booster dose. Sx just before a booster of 106 SRBC iv almost completely prevented bone marrow PFC activity, whereas an iv booster dose of 4 × 108 SRBC evoked a normal IgM, IgG, and IgA PFC response in Sx mice. Apparently low doses of iv administered antigen require the spleen in order to evoke antibody formation in the bone marrow. Experiments with parabiotic mice, consisting of Sx and sham-Sx mice, showed that this facilitating influence of the spleen upon bone marrow antibody formation occurs via the blood stream. In a subsequent study, it was investigated whether the spleen is required throughout the bone marrow PFC response or only during the few days of the initiation phase. Therefore, mice were splenectomized at different intervals after a booster injection of 106 SRBC iv. It appeared that Sx 2 days after the booster injection could still prevent the normal bone marrow PFC activity, whereas Sx at Day 4 could no longer do so. Apparently, after an iv booster injection, the spleen is only required for initiation of the bone marrow PFC response and not for the maintenance of this PFC activity thereafter.  相似文献   

2.
After intravenous immunization of mice with Escherichia coli lipopolysaccharide (LPS) or sheep red blood cells (SRBC), the bone marrow can contain large numbers of plaque-forming cells (PFC). By means of parabiosis, it was studied whether or not this appearance of PFC in the bone marrow might be due to a migration of such cells from peripheral lymphoid organs into the marrow, as has been suggested in the literature. Using parabionts consisting of nonimmunized mice and mice immunized with LPS, only background numbers of PFC could be demonstrated in the bone marrow of the nonimmunized mice. In similar experiments, with SRBC as antigen, mice showing high anti-SRBC PFC activity in the bone marrow could only provide for minor numbers of anti-SRBC PFC in the bone marrow of affixed normal mice. These results suggest that migration of PFC can not be the main cause for bone marrow PFC activity in the mouse. This provides additional evidence for our view presented in previous papers of this series that the appearance of PFC activity in the bone marrow is dependent on local maturation of B cells into PFC rather than on immigration of PFC.  相似文献   

3.
Mouse bone marrow barely contains antibody-producing plaque-forming cells (PFC) during the primary response to sheep red blood cells (SRBC). However, during the secondary response, the number of IgM, IgG, and IgA PFC in the bone marrow can rise to a level which surpasses the number of PFC in all the other lymphoid organs together. In the present paper we investigated whether the capacity of immune mice to react upon a booster injection of SRBC with a bone marrow PFC response can be transferred from immune to nonimmune mice. Therefore, mice primed with SRBC 6 months previously and nonprimed syngeneic mice were joined for parabiosis and were separated from each other at various intervals after joining. These separated mice were subsequently immunized with SRBC. It was found that, after 3 weeks of parabiosis, the nonprimed members reacted upon an injection of SRBC with a bone marrow IgM, IgG, and IgA PFC response as high as did the previously primed members. Furthermore it could be demonstrated by means of cell transfer experiments that, after a period of parabiosis of 3 weeks, the bone marrow and spleen of the normal mice contained about as many memory cells as the bone marrow and spleen of the immune mice. These results suggest that antibody formation in mouse bone marrow is dependent on a population of potentially circulating memory cells.  相似文献   

4.
5.
An analysis was made of some of the processes involved in the stimulation by colony stimulating factor (CSF) of cluster and colony formation by mouse bone marrow cells in agar cultures in vitro. Colony formation was shown to be related to the concentration and not the total amount of CSF. The concentration of CSF determined the rate of new cluster initiation in cultures and the rate of growth of individual clusters. Colony growth depleted the medium of CSF suggesting that colony cells may utilise CSF during proliferation. Bone marrow cells incubated in agar in the absence of CSF rapidly died or lost their capacity to proliferate and form clusters or colonies. CSF appears (a) to be necessary for survival of cluster-and colony-forming cells or for survival of their proliferative potential, (b) to shorten the lag period before individual cells commence proliferation and (c) to increase the growth rate of individual clusters and colonies.  相似文献   

6.
A mathematical model of mouse granulopoiesis in long-term bone marrow culture was constructed, based on established in vivo cell kinetic parameters. We applied the model to the cell kinetic experiment presented in Part I. Comparing model-predicted cell kinetics with the experimental data led to iterative testing of several hypotheses. In the final model, the cell kinetics of intact tissue culture flasks were reconstructed, using the experimental data from 10 days of tube culture. Among other things, our analysis suggests that the parameters of normal in vivo granulopoiesis apply to bone marrow culture.  相似文献   

7.
8.
9.
A simulation analysis of the kinetics of micronucleus formation in polychromatic erythrocytes in mouse bone marrow was performed after a single administration of 3 chemicals--mitomycin C (MMC), 6-mercaptopurine (6-MP) and 1-beta-D-arabinofuranosylcytosine (Ara-C)--with different modes of action. The time-response patterns in the incidence of chromosomal aberrations and micronuclei after treatment with each chemical were compared and subjected to the simulation study with 3 parameters. Two of them, the time between the final mitotic metaphase of the erythroid series and nucleus expulsion (T1), and the duration of the polychromatic erythrocyte (PCE) stage in the bone marrow (T2), were almost identical for the 3 chemicals. However, the coefficients of formation rate of micronucleated cells resulting from cells with chromosomal aberration(s) (k) differed: Ara-C differed from the other two. These results indicate that chromosomal aberrations, especially chromatid breaks and probably gaps, induced by this chemical, effectively contribute to micronucleus formation. The DNA content of micronuclei was also compared to the length of acentric fragments induced by Ara-C and it was found that their distributions were comparable. These findings strongly suggest that chromosomal aberrations induced by chemicals are essential events for the induction of micronuclei in the PCE of bone marrow.  相似文献   

10.
Atrazine, simazine, and cyanazine are widely used preemergence and postemergence triazine herbicides that have made their way into the potable water supply of many agricultural communities. Although there are several contradictory genotoxicity studies in the literature, our previous in vitro studies with human lymphocytes showed that atrazine, simazine, and cyanazine did not induce sister chromatid exchanges (SCEs) or chromosome aberrations (CAs) up to the limits of solubility in aqueous medium using 0.5% dimethyl sulfoxide. To expand upon these results and to ensure that our in vitro findings could be replicated in an in vivo system, mice were treated with each triazine by two intraperitoneal injections, 24h apart. The animals were sacrificed and the bone marrow removed for micronucleus (MN) analysis, 24h after the last injection. Two to four independent trials were performed for MN analysis in polychromatic erythrocytes, and in some trials the spleen was removed, cultured, and analyzed for SCEs and CAs. None of the triazines investigated induced MN in the bone marrow, even at doses that caused significant bone marrow suppression and/or death. These results indicate that atrazine, simazine, and cyanazine are not genotoxic as measured by the bone marrow MN assay in mice following high dose exposures.  相似文献   

11.
Ultradian oscillations in the number of karyocytes isolated from the femoral bone of intact ACR mice have been demonstrated. The periodicity of oscillations did not depend on the season or the site of mice breeding. The bone marrow also showed ultradian oscillations in relative and absolute amount of lymphoid, myeloid and mitotic cells. It is postulated that differentiation and migration of bone marrow cells might have ultradian biorhythms.  相似文献   

12.
13.
The authors attempted to cultivate frozen mouse bone marrow cells in a semisolid medium. They demonstrated that the stem haematopoietic cells of frozen mouse bone marrow were capable of proliferation and of colony formation on agar. The much smaller number of colonies from frozen mouse bone marrow (about 80% fewer) compared with fresh marrow is evidence that part of the stem haematopoietic cell population retains proliferative capacity even after freezing.  相似文献   

14.
S M Amer  M A Fahmy 《Mutation research》1983,117(3-4):329-336
The induction of micronuclei in mouse bone marrow by the organophosphorus insecticide gardona (also known as tetrachlorvinphos) was tested. 3 routes of administration were used for the pure insecticide: intraperitoneal, oral and dermal. The different routes of treatment with gardona caused toxicity of marrow indicated as significant increases in the percentage of polychromatic erythrocytes over that of the control. Intraperitoneal and oral treatments induced a statistically significant percentage of micronucleated PE.  相似文献   

15.
Using a modification of the agar gel method for bone marrow culture, serum from various strains of mice has been tested for colony stimulating activity. Ninety percent of sera from AKR mice with spontaneous or transplanted lymphoid leukemia and 40–50% of sera from normal or preleukemic AKR mice stimulated colony formation by C57B1 bone marrow cells. Sera from 6% of C3H and 30% of C57B1 mice stimulated similar colony formation. The incidence of sera with colony stimulating activity rose with increasing age. All colonies were initially mainly granulocytic in nature but later became pure populations of mononuclear cells. Bone marrow cells exhibited considerable variation in their responsiveness to stimulation by mouse serum. Increasing the serum dose increased the number and size of bone marrow cell colonies and with optimal serum doses, 1 in 1000 bone marrow cells formed a cell colony. Preincubation of cells with active serum did not stimulate colony formation by washed bone marrow cells. The active factor in serum was filterable, non-dialysable and heat and ether labile.  相似文献   

16.
Since zinc desferrioxamine (Zn-DFO) has been shown to be a very potent protector against injuries induced by redox-active metal ions, we examined its protective effect against radiation-induced toxicity. We found that treatment with Zn-DFO given before TBI increased the survival of mice irradiated with 7.5 and 8.5 Gy. Zn-DFO also protected against radiation-induced myelosuppression and body weight loss, while soluble Il6 levels in serum were normalized in mice pretreated with Zn-DFO. We concluded that administration of Zn-DFO prior to TBI protected BALB/c mice from radiation-induced toxicity, increasing survival rates by up to 75%. The biological effect of Zn-DFO is known to result from its effect on the production of intracellular hydroxyl free radicals mediated by redox-active metal ions, and both metal chelation and zinc delivery appear to be equally likely mechanisms for this outcome. We suggest that radiation-induced toxicity is caused by the deleterious effect of redox-active metal ions, and that compounds which modulate this redox activity may act as radioprotectors.  相似文献   

17.
Transverse histologic sections of bone marrow obtained from mice that were sacrificed by perfusion fixation at intervals following tritiated thymidine injection were studied by means of radioautography. A kinetic gradient was demonstrated across the marrow section, with the highest proliferative rate in the subendosteal region. Megakaryocytes were shown to originate from the rapidly proliferating subendosteal cells. The immediate proliferating precursors of mature granulocytes were slowly proliferating cells found predominantly in the central region of the marrow. It was concluded that in the steady state there must be a migration of cells from the subendosteal region to the central region with concomitant growth retardation of the migrating cells.  相似文献   

18.
Antisera to mouse brain reacts with hematopoietic stem cells in the mouse bone marrow. We have examined the effect of anti-mouse brain serum (AMBS) on the development of in vitro colonies from mouse bone marrow cells. The addition of 5% AMBS to the cultures markedly decreased the numbers of colonies formed to an average of 10% of the number obtained with normal rabbit serum. AMBS suppressed formation induced by colony stimulating factors (CSF) derived from three different sources; serum from endotoxin treated mice, mouse L-cell conditioned media, and human peripheral mononuclear cell conditioned media. The suppressive activity was quantitatively recovered in the IgG fraction of AMBS. Divalent F(ab')2 fragments were as effective as the intact IgG in decreasing colony formation. Fab fragments were not suppressive. These results suggest that colony formation is induced via a dynamic interaction between CSF and the progenitor cell membrane, and that antibody directed at cell membrane antigen(s) interferes with the generation of the induction signal.  相似文献   

19.
Bone marrow culture in semi-solid agar was used to assess the proliferative activity and the response to sodium aurothiomalate of the myeloid precursor cells from patients during and after recovery from neutropenia associated with the use of this drug. Colony formation was reduced during the neutropenia and returned to normal after recovery. The rheumatoid process itself did not impair colony formation even in patients with Felty''s syndrome. Sodium aurothiomalate inhibited colony formation by normal marrow in a dose-dependent manner. Bone marrow colonies from patients who had recovered from neutropenia induced by sodium aurothiomalate were not abnormally sensitive to the inhibitory effect of the drug in vitro. The metabolism of gold is probably altered in a small proportion of patients, which causes high local concentrations within the bone marrow leading directly to marrow depression.  相似文献   

20.
Following Colcemid administration, mitoses accumulate preferentially in the subendosteal region of the bone marrow of the mouse. This finding suggests that the most rapidly proliferating cells are localized to the subendosteal region, and complements previous radioautographic studies which have demonstrated a corresponding labelling gradient in the marrow. Quantitative estimates of cell cycle time by the stathmokinetic method were precluded by the presence of significant Colcemid induced interphase cell loss. Colcemid also affected cell differentiation in the marrow. Following Colcemid administration there was a fall in mature granulocytes in the marrow, and a concommitant rise in marrow megakaryocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号