首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aerobic uptake of inorganic ions, such as 86Rb+ or 125I-, by submitochondrial particles, is about one order of magnitude lower than the uptake of organic ions, such as acridines or 8-anilino-1-naphthalene sulphonate. The values of deltapH, the transmembrane pH differential, and deltapsi, the transmembrane membrane potential are between 60 and 100 mV when calculated on the inorganic ions and between 150 and 240 mV when calculated on the organic ions. The discrepancy between the deltapH and deltapsi values from organic and inorganic ions is large at high but not at low ion/protein ratios. 2. In the absence of weak bases and strong acids the values of deltamuH, the proton electrochemical potential difference, are close to 100 mV and the magnitude of deltapH and deltapsi are similar. Weak bases decrease deltapH and enhance deltapsi. Strong acids decrease deltapsi and enhance deltapH. Interchangeability of deltapH with deltapsi occurs at low concentrations of weak bases and strong acids. High concentrations of weak bases and strong acids cause depression of deltamuH. 3. Concentrations of weak bases capable of abolishing deltapH, do not affect ATP synthesis. Concentrations of strong acids capable of abolishing deltapsi affect only slightly ATP synthesis. Concentrations of weak bases and strong acids capable of causing a decline of deltapH + deltapsi inhibit ATP synthesis. 4. Depression of deltamuH is paralleled by inhibition of ATP synthesis and decline of deltaGp, the phosphate potential. Abolition of ATP synthesis occurs only when deltamuH is below 20 mV. The deltaGp/deltamuH ratio increases hyperbolically with the decrease of deltamuH.  相似文献   

2.
The light-dependent uptake of triphenylmethylphosphonium (TPMP+) and of 5,5-dimethyloxazolidine-2,4-dione (DMO) by starved purple cells of Halobacterium halobium was investigated. DMO uptake was used to calculate the pH difference (deltapH) across the membrane, and TPMP+ was used as an index of the electrical potential difference, deltapsi. Under most conditions, both in the light and in the dark, the cells are more alkaline than the medium. In the light at pH 6.6, deltapH amounts to 0.6-0.8 pH unit. Its value can be increased to 1.5-2.0 by either incubating the cells with TPMP+ (10(-3) M) or at low external pH (5.5). --deltapH can be lowered by uncoupler or by nigericin. The TPMP+ uptake by the cells indicates a large deltapsi across the membrane, negative inside. It was estimated that in the light, at pH 6.6, deltapsi might reach a value of about 100 mV and that consequently the electrical equivalent of the proton electrochemical potential difference, deltamuH+/F, amounts under these conditions to about 140 mV. The effects of different ionophores on the light-drive proton extrusion by the cells were in agreement with the effects of these compounds on --deltapH.  相似文献   

3.
S Ramos  H R Kaback 《Biochemistry》1977,16(5):854-859
In the previous paper [ramos, S., and Kaback, H.R. (1977), Biochemistry 16 (preceding paper in this issue)], it was demonstrated that Escherichia coli membrane vesicles generate a large electrochemical proton gradient (delta-muH+) under appropriate conditions, and some of the properties of delta-muH+ and its component forces [i.e., the membrane potential (delta psi) and the chemical gradient of protons (deltapH)] were described. In this paper, the relationship between delta-muH+, delta psi, and deltapH and the active transport of specific solutes is examined. Addition of lactose or glucose 6-phosphate to membrane vesicles containing the appropriate transport systems results in partial collapse of deltapH, providing direct evidence for the suggestion that respiratory energy can drive active transport via the pH gradient across the membrane. Titration studies with valinomycin and nigericin lead to the conclusion that, at pH 5.5, there are two general classes of transport systems: those that are driven primarily by delta-muH+ (lactose, proline, serine, glycine, tyrosine, glutamate, leucine, lysine, cysteine, and succinate) and those that are driven primarily by deltapH (glucose 6-phosphate, D-lactate, glucuronate, and gluconate). Importantly, however, it is also demonstrated that at pH 7.5, all of these transport systems are driven by delta psi which comprises the only component of delta-muH+ at this external pH. In addition, the effect of external pH on the steady-state levels of accumulation of different solutes is examined, and it is shown that none of the pH profiles correspond to those observed for delta-muH+, delta psi, or deltapH. Moreover, at external pH values above 6.0-6.5, delta-muH+ is insufficient to account for the concentration gradients established for each substrate unless the stoichiometry between protons and accumulated solutes is greater than unity. The results confirm many facets of the chemiosmotic hypothesis, but they also extend the concept in certain important respects and allow explanations for some earlier observations which seemed to preclude the involvement of chemiosmotic phenomena in active transport.  相似文献   

4.
The electrochemical proton gradient in Escherichia coli membrane vesicles.   总被引:25,自引:0,他引:25  
S Ramos  H R Kaback 《Biochemistry》1977,16(5):848-854
Membrane vesicles isolated from Escherichia coli grown under various conditions generate a transmembrane pH gradient (delta pH) of about 2 pH units (interior alkaline) under appropriate conditions when assayed by flow dialysis. Using the distribution of weak acids to measure delta pH and the distribution of the lipophilic cation triphenylmethylphosphonium to measure the electrical potential (delta psi) across the membrane, the vesicles are demonstrated to develop an electrochemical proton gradient (delta-muH+) of almost - 200 mV (interior negative and alkaline) at pH 5.5 in the presence of reduced phenazine methosulfate or D-lactate, the major component of which is a deltapH of about - 120 mV. As external pH is increased, deltapH decreases, reaching 0 at about pH 7.5 and above, while delta psi remains at about - 75 mV and internal pH remains at pH 7.5-7.8. The variations in deltapH correlate with changes in the oxidation of reduced phenazine methosulfate or D-lactate, both of which vary with external pH in a manner similar to that described for deltapH. Finally, deltapH and delta psi can be varied reciprocally in the presence of valinomycin and nigericin with little change in delta-muH+ and no change in respiratory activity. These data and those presented in the following paper (Ramos and Kaback 1976) provide strong support for the role of chemiosmotic phenomena in active transport and extend certain aspects of the chemiosmotic hypothesis.  相似文献   

5.
The biodiversity of growth and energetics in Leuconostoc sp. has been studied in MRS lactose medium with and without citrate. On lactose alone, Ln. lactis has a growth rate double that of Ln. cremoris and Ln. mesenteroides. The pH is a more critical parameter for Ln. mesenteroides than for Ln. lactis or Ln. cremoris; without pH control Ln. mesenteroides is unable to acidify the medium under pH 4.5, while with pH control and as a consequence of a high Y(ATP) its growth is greater than Ln. lactis and Ln. cremoris. In general, lactose-citrate co-metabolism increases the growth rate, the biomass synthesis, the lactose utilisation ratio, and the production of lactate and acetate from lactose catabolism. The combined effect of the pH and the co-metabolism lactose-citrate on the two components of the proton motive force (deltap = deltapsi - ZdeltapH) has been studied using resting-cell experiments. At neutral pH deltap is nearly entirely due to the deltapsi, whereas at acidic pH the deltapH is the major component. On lactose alone, strains have a different aptitude to regulate their intracellular pH value, for Ln. mesenteroides it drastically decreases at acidic pH values (pH, = 5.2 for pH 4), while for Ln. lactis and Ln. cremoris it remains above pH 6. Lactose-citrate co-metabolism allows a better control of pH homeostasis in Ln. mesenteroides, consequently the pHi becomes homogeneous between the three strains studied, for pH 4 it is in an interval of 0.3 pH unit (from pHi = 6.4 to pHi = 6.7). In this metabolic state, and as a consequence of the variation in deltapH, and to some extent in the deltapsi, the difference of deltap between the three strains is restricted to an interval of 20 mV.  相似文献   

6.
The relationship between the steady state lactose accumulation (delta plac) and the magnitude of the membrane potential (delta psi) and pH gradient (delta pH) has been studied at pHo5.5 and pHo7.5. An attempt has been made to differentiate between two possible means by which lactose accumulation may be reduced below the proton-motive force (delta p). Firstly, that delta psi and delta pH are not equivalent in driving lactose transport and secondly, that 'slip' reactions (beta-galactoside exit via the carrier without a proton) may reduce accumulation. The data support the latter; however, our conclusions are tempered by the observation that the apparent stoichiometry (delta plac/delta p) increases to a value of at least 2 at values of delta p below 130 mV.  相似文献   

7.
Most nutrients and ions in bacteria, yeasts, algae, and plants are transported uphill at the expense of a gradient of the electrochemical potential of protons deltamu-H+ (a type of secondary active transport). Diagnosis of such transports rests on the determination of the transmembrane electrical potential difference deltapsi and the difference of pH at the two membrane sides. The behavior of kinetic parameters K(T) (the half-saturation constant) and J(max), (the maximum rate of transport) upon changing driving ion concentrations and electrical potentials may be used to determine the molecular details of the transport reaction. Equilibrium accumulation ratios of driven solutes are expected to be in agreement with the deltapsi and deltapH measured independently, as well as with the Haldane-type expression involving K(T) and J(max). Different stoichiometries of H+/solute, as well as intramembrane effects of pH and deltapsi, may account for some of the observed inconsistencies.  相似文献   

8.
The correlation between deltamuH, the proton electrochemical potential difference, and the rate of controlled respiration is analyzed. deltamuH (the proton concentration gradient) is measured on the distribution of [3H]acetate, and deltapsi (the membrane potential) on the distribution of 86Rb+, 45Ca2+ and [3H]triphenylmethylphosphonium used either alone or simultaneously. The effects of the addition of ADP + hexokinase (state-3 ADP) and of carbonylcyanide trifluoromethoxyphenylhydrazone (state-3 uncoupler) on respiration and deltamuH are not equivalent: the uncoupler depresses deltamuH more than ADP at equivalent respiratory rates. The effects of the additions of nigericin-valinomycin and of ionophore A23187 (state-3 cation transport) and of carbonylcyanide trifluoromethoxy-phenylhydrazone (state 3-uncoupler) on respiration and deltamuH are also not equivalent: the uncoupler depresses deltamuH more than A23187 and nigericin + valinomycin at equivalent respiratory rate. A23187 is very efficient in stimulating respiration with negligible deltamuH changes.  相似文献   

9.
Saccharomyces cerevisiae IGC4072 grown in lactic acid medium transported lactate by an accumulative electroneutral proton-lactate symport with a proton-lactate stoichiometry of 1:1. The accumulation ratio measured with propionate increased with decreasing pH from ca. 24-fold at pH 6.0 to ca. 1,400-fold at pH 3.0. The symport accepted the following monocarboxylates (Km values at 25 degrees C and pH 5.5): D-lactate (0.13 mM), L-lactate (0.13 mM), pyruvate (0.34 mM), propionate (0.09 mM), and acetate (0.05 mM), whereas apparently a different proton symport accepted formate (0.13 mM). The lactate system was inducible and was subject to glucose repression. Undissociated lactic acid entered the cells by simple diffusion. The permeability of the plasma membrane for undissociated lactic acid increased exponentially with pH, and the diffusion constant increased 40-fold when the pH was increased from 3.0 to 6.0.  相似文献   

10.
Saccharomyces cerevisiae IGC4072 grown in lactic acid medium transported lactate by an accumulative electroneutral proton-lactate symport with a proton-lactate stoichiometry of 1:1. The accumulation ratio measured with propionate increased with decreasing pH from ca. 24-fold at pH 6.0 to ca. 1,400-fold at pH 3.0. The symport accepted the following monocarboxylates (Km values at 25 degrees C and pH 5.5): D-lactate (0.13 mM), L-lactate (0.13 mM), pyruvate (0.34 mM), propionate (0.09 mM), and acetate (0.05 mM), whereas apparently a different proton symport accepted formate (0.13 mM). The lactate system was inducible and was subject to glucose repression. Undissociated lactic acid entered the cells by simple diffusion. The permeability of the plasma membrane for undissociated lactic acid increased exponentially with pH, and the diffusion constant increased 40-fold when the pH was increased from 3.0 to 6.0.  相似文献   

11.
Proteoliposome vesicles containing both bacteriorhodopsin of Halobacterium halobium and H+-translocating ATPase [EC 3.6,1.3] of a thermophilic bacterium, PS3, (TF0-F1) were reconstituted by either the dialysis method or the sonication method. Generation of the electrochemical proton gradient (deltamuH+) in these vesicles was measured using 9-aminoacridine for estimation of the chemical (deltapH) component and 8-anilinonaphthalene sulfonate for the electrical (deltaphi) component). In illuminated bacteriorhodopsin-vesicles the deltamuH+ reached 180-190 mV when reconstituted by the dialysis method and 210-220 mV when reconstituted by the sonication method. Vesicles reconstituted from both TF0-F1 and bacteriorhodopsin by the dialysis method generated a deltapH+ of about 200 mV on addition of ATP, while vesicles prepared by the sonication method generated very little deltamuH+, if any. These vesicles generated similar deltamuH+ on illumination to that found in bacteriorhodopsin-vesicles. Using vesicles reconstituted from both TF0-F1 and bacteriorhodopsin by the dialysis method, light dependent ATP synthesis was measured in relation to deltamuH+ formation. It was necessary to generate a deltamuH+ of above 170 mV for demonstration of appreciable formation of ATP and the greater the deltamuH+, the faster the rate of ATP synthesis.  相似文献   

12.
Bacteria transduce and conserve energy at the plasma membrane in the form of an electrochemical gradient of hydrogen ions (deltap). Energized cells of Streptococcus lactis accumulate K+ ions presumably in exchange for H+. We reasoned that if the movement of H+ is limited, then an increase in H+ efflux, effected by potassium transport inward, should result in changes in the steady-state deltap. We determined the electrical gradient (deltapsi) from the fluorescence of a membrane potential-sensitive cyanine dye, and the chemical H+ gradient (deltapH) from the distribution of a weak acid. The deltap was also determined independently from the accumulation levels of the non-metabolizable sugar thiomethyl-beta-galactoside. KCl addition to cells fermenting glucose or arginine at pH 5 changed the deltap very little, but lowered the deltapsi, while increasing the deltapH. At pH 7, the deltapH only increased slightly; thus, the decrease in deltapsi, effected by addition of potassium ions, resulted in a lowered steady-state deltap. These effects were shown not to be due to swelling or shrinking of the cells. Thus, in these nongrowing cells, under conditions of energy utilization for the active transport of K+, the components of deltap can vary depending on the limitations on the net movement of protons.  相似文献   

13.
Evidence is presented indicating that the carrier-mediated uptake of 3-deoxy-2-oxo-D-gluconate and D-glucuronate in Escherichia coli K12 is driven by the deltapH and deltapsi components of the protonmotive force. 1. Approximately two protons enter the cells with each sugar molecule, independent of the sugar and the strain used. 2. In respiring cells, the magnitude of the pH gradient alone, as measured by distribution of [3H]acetate, appears to be insufficient to account for the chemical gradient of 3-deoxy-2-oxo-D-gluconate that is developed between pH 6.0 and 8.0. 3. If the external pH is varied between 5.5 and 8.0, 3-deoxy-2-oxo-D-gluconate uptake is gradually inhibited by valinomycin plus K+ ions, whereas the inhibition caused by nigericin is concomitantly relieved, thus reflecting the relative contribution of deltapH and deltapsi to the total protonmotive force at each external pH. 4. 3-Deoxy-2-oxo-D-gluconate can be transiently accumulated into isolated membrane vesicles in response to an artificially induced pH gradient. The process is stimulated when the membrane potential is collapsed by valinomycin in the presence of K+ ions.  相似文献   

14.
Sucrose phosphate synthase was partially purified from spinach leaves and the effects and interactions among glucose-6-P, inorganic phosphate (Pi), and pH were investigated. Glucose-6-P activated sucrose phosphate synthase and the concentration required for 50% of maximal activation increased as the concentration of fructose-6-P was decreased. Inorganic phosphate inhibited sucrose phosphate synthase activity and antagonized the activation by glucose-6-P. Inorganic phosphate caused a progressive increase in the concentration of glucose-6-P required for 50% maximal activation from 0.85 mm (minus Pi) to 9.9 mm (20 mm Pi). In the absence of glucose-6-P, Pi caused partial inhibition of sucrose phosphate synthase activity (about 65%). The concentration of Pi required for 50% maximal inhibition decreased with a change in pH from 6.5 to 7.5. When the effect of pH on Pi ionization was taken into account, it was found that per cent inhibition increased hyperbolically with increasing dibasic phosphate concentration independent of the pH. Sucrose phosphate synthase had a relatively broad pH optimum centered at pH 7.5. Inhibition by Pi was absent at pH 5.5, but became more pronounced at alkaline pH, whereas activation by glucose-6-P was observed over the entire pH range tested. The results suggested that glucose-6-P and Pi bind to sites distinct from the catalytic site, e.g. allosteric sites, and that the interactions of these effectors with pH and concentrations of substrate may be involved in the regulation of sucrose synthesis in vivo.  相似文献   

15.
Bassilana M  Damiano E  Leblanc G 《Biochemistry》1984,23(22):5288-5294
Modifications of the kinetic properties of the Escherichia coli (RA11) Na(+) - H(+) antiport system by imposed pH gradients (deltapH, interior alkaline) and membrane potential(delta(psi), interior negative) were studied by looking at the accelerating effects of deltapH and delta on downhill Na(+) efflux from membrane vesicles incubated at different external pHs. First,variations of the Na(+) efflux rate ( VNa) as a function of imposed delta pH appear to be strongly dependent on the external pH value.The individual VN, vs. deltapH relationships observed between pH 5.5 and pH 6.6 are all nonlinear and indicate the existence of a threshold deltapH above which V(Na) increases steeply as the deltapH magnitude increases; threshold deltapH values progressively decrease as the pH is raised from 5.5 to 6.6. In contrast, at or above neutrality, V(Na) acceleration is linearly related to deltapH amplitude. Strikingly, it is shown that the deltapH-dependent variations in the Na(+) efflux rate measured in vesicles incubated at different external pHs can be accounted for by variations of internal pH; the observed relationship suggests that a high internal H(+) concentration inhibits the Na(+) -H(+) antiport activity.This inhibition results from a drastic increase in the apparent K(m), of the Na(+) efflux reaction as the internal H(+) concentration increases. On the other hand, imposed Δ increases the Na(+) efflux rate linearly by a selective modification of the V(max) value of the Na(+) efflux. Together, these data indicate that the internal H(+) concentration controls the Na(+)-H(+) antiport activity and that the chemical and electrical proton gradients affect two different kinetic steps of the Na(+)-H(+) exchange reaction.  相似文献   

16.
Linolenic acid (C18:3) is the main endogenous unsaturated fatty acid of thylakoid membrane lipids, and seems in its free form to exert significant effects on the structure and function of photosynthetic membranes. In this investigation the effect of linolenic acid was studied at various pH values on the electron flow rate in isolated spinach chloroplasts and related to deltapH, the proton pump and the pH of the inner thylakoid space (pHi). The deltapH and pHi were estimated from the extent of the fluorescence quenching of 9-aminoacridine. Linolenic acid caused a shift (approximately one unit) of the pH optimum for electron flow toward acidity in the following systems: (a) photosystems II + I (from H2O to NADP+ or to 2,6-dichlorophenolindophenol) coupled or non-coupled; (b) photosystem II (from H2O to 2,6-dichlorophenolindophenol in the presence of dibromothymoquinone). In photosystem I conditions (phenazine methosulphate), the deltapH of the control increased as a function of external pHo with a maximum around pH 8.8. When linolenic acid was added, the deltapH dropped, but its optimum was shifted toward more acidic pHo. The same phenomena were also observed in photosytems II + I (from H2O to ferricyanide) and in photosystem II conditions (from H2O to ferricyanide in the presence of dibromothymoquinone). However, the deltapH was smaller and the sensitivity of the proton gradient toward linolenic acid was eventually higher than for photosystem I electron flow activity. The proton pump which might be considered as a measure of the internal buffering capacity of thylakoids was optimum at pHo, 6.7 in the controls. An addition of linolenic acid diminished the proton pump and shifted its optimum toward higher pHo. As a consequence, pHi increased when pHo was raised. At the optimal pHo 8.6 to 9, pHi were 5 to 5.5. Additions of increasing concentrations of linolenic acid displaced the curves toward higher pHi. A decrease of pHo was therefore required to maintain the pHi in the range of 5-5.5 for maximum electron flow. In conclusion, the electron flow activity seems to be delicately controlled by the proton pump (buffer capacity), deltapH, pHi and pHo. Fatty acids damage the membrane integrity in such a way that the subtile equilibrium between the factors is disturbed.  相似文献   

17.
Proton motive force (PMF), intracellular end product concentrations, and ATP levels were determined when a steady-state Lactobacillus plantarum 8014 anaerobic chemostat culture was shifted to an aerobic condition or was shifted from pH 5.5 to 7.5. The PMF and intracellular ATP levels increased immediately after the culture was shifted from anaerobic to aerobic conditions. The concentrations of intracellular lactate and acetate, which exported protons that contributed to the proton gradient, changed in the same fashion. The H+/lactate stoichiometry, n, varied from 0.8 to 1.2, and the H+/acetate n value changed from 0.8 to 1.6 at 2 h after the shift to aerobic conditions. The n value for acetate excretion remained elevated at aerobic steady state. When the anaerobic culture was shifted from pH 5.5 to 7.5, intracellular ATP increased 20% immediately even though the PMF decreased 50% as a result of the depletion of the transmembrane proton gradient. The H+/lactate n value changed from 0.7 to 1.8, and n for H+/acetate increased from 0.9 to 1.9 at pH 7.5 steady state. In addition, the H+/acetate stoichiometry was always higher than the n value for H+/lactate; both were higher in alkaline than aerobic conditions, demonstrating that L. plantarum 8014 coexcreted more protons with end products to maintain intracellular pH homeostasis and generate proton gradients under aerobic and alkaline conditions. During the transient to pH 7.5, the n value for H+/acetate approached 3, which would spare one ATP.  相似文献   

18.
Membrane vesicles of Escherichia coli can be produced by 2 different methods: lysis of intact cells by passage through a French pressure cell or by osmotic rupturing of spheroplasts. The membrane of vesicles produced by the former method is everted relative to the orientation of the inner membrane in vivo. Using NADH, D-lactate, reduced phenazine methosulfate, or ATP these vesicles produce protonmotive forces, acid and positive inside, as determined using flow dialysis to measured the distribution of the weak base methylamine and the lipophilic anion thiocyanate. The vesicles accumulate calcium using the same energy sources, most likely by a calcium/proton antiport. Calcium accumulation, therefore, is presumably indicative of a proton gradient, acid inside. The latter type of vesicle, on the other hand, exhibits D-lactate-dependent proline transport but does not accumulate calcium with D-lactate as an energy source. NADH oxidation or ATP hydrolysis, however, will drive the transport of calcium but not proline in these vesicles. Oxidation of NADH or hydrolysis of ATP simultaneous with oxidation of D-lactate does not result in either calcium or proline transport. These results suggest that the vesicles are a patchwork or mosiac, in which certain enzyme complexes have an orientation opposite to that found in vivo, resulting in the formation of electrochemical proton gradients with an orientation opposite to that found in the intact cell. Other complexes retain their original orientation, making it possible to set up simultaneous proton fluxes in both directions, causing an apparent uncoupling of energy-linked processes. That the vesicles are capable of generating protonmotive forces of the opposite polarity was demonstrated by measurements of the distribution of acetate and methylamine (to measure the ΔpH) and thiocyanate (to measure the Δψ).  相似文献   

19.
The relation between the intramitochondrial and extramitochondrial ratio ATP/ADP, the transmembrane potential and pH gradient is investigated in the present communication. For this purpose mitochondria are equilibrated with added [14C]ATP in the presence of substrate and oligomycin for eliminating phosphate transfer by ATPase. The membrane potential was measured by the distribution of 86Rb+ in the presence of valinomycin, the deltapH by the distribution of [14C]acetate. In the energized state by varying deltapsi between 60 and 160 mV, the internal (ATP/ADP)i is decreased 30-fold, the external (ATP/ADP)e remains largely constant. As a result, the deltalog (ATP/ADP)e/(ATP/ADP)i = deltalogphi is increased linerly with deltapsi according to the following relation: deltalogphi = 0.85 deltapsi - 0.35. The deltapH was changed between 0.1 and 0.8 by increasing the Pi concentration causing only a minor decrease of deltalogphi would be expected if the ATP-ADP exchange has a significant electroneutral portion. Also in the uncoupled and respiration-inhibited state the same function between deltalogphi and deltapsi is found as in the energized states. It is concluded that under these conditions the ATP-ADP exchange is largely electrical.  相似文献   

20.
Proton electrochemical gradient and phosphate potential in mitochondria   总被引:4,自引:0,他引:4  
The paper reports an analysis of the relationship between deltamuH the proton electrochemical potential difference, and deltaGp, the phosphate potential. Depression of deltamuH and deltaGp has been obtained by titration with: (a) carbonylcyanide trifluoromethoxyphenylhydrazone; (b) nigericin (+ valinomycin); (c) KCl (+ valinomycin); and (d) rotenone. The uncoupler depresses deltamuH more than nigericin (+ valinomycin), KCl (+ valinomycin) and rotenone at equivalent deltaGp. The deltaGp/deltamuH ratio is about 3 at high values of deltamuH. When deltaGp and deltamuH are depressed by nigericin (4 valinomycin) the deltaGp/deltamuH ratio remains constant. When deltaGp and deltamuH are depressed by uncouplers, the deltaGp/deltamuH ratio increases hyperbolically tending to infinity while deltamuH tends to zero. The absence of constant proportionality between deltaGp and deltamuH indicates that the proton gradients driving ATP synthesis presumably operate within microscopic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号