首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The optical sectioning video imaging technique was used for measurements of the volume of mitochondria-rich (m.r.) cells of the isolated epithelium of toad skin. Under short-circuit conditions, cell volume decreased by about 14% in response to bilateral exposure to Cl-free (gluconate substitution) solutions, apical exposure to ouabain resulted in a large increase in volume, which could be prevented either by the simultaneous application of amiloride in the apical solution or by the exposure of the epithelium to bilateral Cl-free solutions. Unilateral exposure to a Cl-free solution did not prevent ouabain-induced cell swelling. It is concluded that m.r. cells have an amiloride-blockable Na conductance in the apical membrane, a ouabain-sensitive Na pump in the basolateral membrane, and a passive Cl permeability in both membranes. From the initial rate of ouabain-induced cell volume increase the active Na current carried by a single m.r. cell was estimated to be 9.9±1.3 pA. Voltage clamping of the preparation in the physiological range of potentials (0 to –100 mV, serosa grounded) resulted in a cell volume increase with a time course similar to that of the stimulation of the voltage-dependent activation were prevented by exposure of the tissue to a Cl-free apical solution. The steady-state volume of the m.r. cells increased with the clamping voltage, and at –100 mV the volume was about 1.15 times that under short-circuit conditions. The rate of volume increase during current passage was significantly decreased by lowering the serosal K concentration (K i ) to 0.5mm, but was independent of whether K i was 2.4, 5, or 10mm. This indicates that the K conductance of the serosal membrane becomes rate limiting for the uptake of KCl when K i is significantly lower than its physiological value. It is concluded that the voltage-activated Cl currents flow through the m.r. cells and that swelling is caused by an uptake of Cl ions from the apical bath and K ions from the serosal bath. Bilateral exposure of the tissue to hypo- or hypertonic bathing solutions changed cell volume without detectable changes in the Cl conductance. The volume response to external osmotic perturbations followed that of an osmometer with an osmotically inactive volume of 21%. Using this value and the change in cell volume in response to bilateral Cl-free solutions, we calculated an intracellular steady-state Cl concentration of 19.8±1.7mm (n=6) of the short-circuited cell.  相似文献   

2.
Summary The effect of the K-sparing diuretic amiloride was assessed electrophysiologically in the isolated cortical collecting tubule of the rabbit, a segment which absorbs Na and secretes K. Low concentrations of amiloride in the perfusate caused a rapid, reversible, decrease in the magnitude of the lumen negative transepithelial potential difference,V te, transepithelial conductanceG te, and equivalent short-circuit current,I sc, with an apparentK 1/2 of approximately 7×10–8 m. The effects of a maximum inhibitory concentration of amiloride (10–5 m) were identical to those observed upon Na removal from lumen and bath (Na removal from the bath alone has no effect). Removal of Na in the presence of 10–5 m amiloride had no affect onV te,G te, orI sc, and is consistent with the view that amiloride blocks the Na conductive pathways of the apical cell membrane. Further, in the absence of Na, the subsequent addition of amiloride had no influence. In tubules where active Na absorption was either spontaneously low, or abolished by removal of Na from lumen and bath, the elevation of K from 5 to 155 meq/liter in the perfusate caused a marked change of theV te in the negative direction and an increase in theG te. These effects could be attributed to a high K permeability of the apical cell membrane and not of the tight junctions. Amiloride (10–5 m) had no effect on these responses to K. It is concluded that amiloride selectively blocks the apical cell membrane Na channels but has no effect on the K conductive pathways(s). This selective nature of amiloride may indicate that Na and K are transported across the apical cell membrane via separate conductive pathways.  相似文献   

3.
Summary Intracellular ion concentrations were determined in split skins of Rana pipiens using the technique of electron microprobe analysis. Under control conditions, principal cells and mitochondria-rich cells (MR cells) had a similar intracellular ion composition, only the Cl concentration in MR cells was significantly lower. Inhibition of transepithelial Na transport by low concentrations of ouabain (2 × 10–6 m, innerbath) resulted in a Na concentration increase of principal cells from 10.9 to 54.3 mmol/kg wet wt. The increase was completely abolished by simultaneous application of amiloride (10–4 m, outer bath). Amiloride alone resulted in a significant decrease of the Na concentration to 6.1 mmol/kg. w. w. Among MR cells, two different groups of cells could be distinguished; cells that showed a Na increase after ouabain which was even larger than that in principal cells and cells that did not respond to ouabain. In about half of all ouabain-sensitive MR cells the Na increase could be prevented by amiloride. According to these results, a subpopulation of MR cells displays the transport characteristics expected for a transepithelial Na transport compartment, an apical amiloride-sensitive Na influx and abasal ouabain-inhibitable Na efflux. Given the small number of cells, however, it is unlikely that this subtype of MR cells contributes significantly to the overall rate of transepithelial Na transport.I wish to thank Cathy Langford, Cindy Partain, and Ray Whitfield for their excellent technical assistance. Financial support was provided by NIH grants DK35717 and 1S10-RR0-234501.  相似文献   

4.
Basolateral membrane vesicles isolated from rat jejunum were used to characterize a Cl/HCO3 exchange mechanism previously evidenced. Cl uptake experiments provided no evidence for Cl/OH countertransport, confirming anyhow the presence of Cl/HCO3 antiport, which was inhibited by 2 mm furosemide and unaffected by 2 mm amiloride. An outwardly directed Na gradient stimulated Cl uptake and this effect was increased if Na was present at both vesicle surfaces. To investigate the mechanism of coupling between Na and the transport protein, we performed Na uptake experiments. Na uptake was unaffected by cis-bicarbonate and trans-Cl gradients; the reversal of anion gradients was still ineffective. Similar results were obtained when a pH difference across the membrane vesicles was imposed. This study seems to suggest that Na is not transported by the Cl/HCO3 exchanger and that another mode of Na dependence must be taken into account.  相似文献   

5.
Summary The effect of amiloride on the sensitivity to Na of the mucosal border of toad urinary bladder was investigated by recording Na concentration-dependent transepithelial potential difference (V t ) and the intracellular potential. When mucosal Na concentration was normal, amiloride added to the mucosal solution at 10–4 m markedly reduced the mucosal membrane potential (V m ) and altered the potential profile from a two-step type to a well type. Similar changes were observed when Na was totally eliminated from the mucosal medium. The serosal membrane potential was insensitive to amiloride and elimination of mucosal Na. In the absence of amiloride, theV t could be described by the Goldman-Hodgkin-Katz equation in the range of mucosal Na concentration from 0 to 16mm, and amiloride extended this concentration range. By using the Goldman-Hodgkin-Katz equation, Na permeability was calculated from the data ofV t 's obtained in the allowed ranges of Na concentration and compared before and after the addition of amiloride. The results show that Na permeability decreases to 1/600 of control when the maximum dose of amiloride (10–4 m) is applied. The relationship between Na permeability and amiloride concentration is well explained on the basis of assumptions that amiloride binds to the Na site of the mucosal border in one-to-one fashion and in a competitive manner with Na and that Na permeability reduces in proportion to increase in number of the sites bound with amiloride.  相似文献   

6.
Summary The present study was designed to investigate the apical and basolateral transport processes responsible for intracellular pH regulation in the thin descending limb of Henle. Rabbit thin descending limbs of long-loop nephrons were perfused in vitro and intracellular pH (pH i ) was measured using BCECF. Steady-state pH i in HEPES buffered solutions (pH 7.4) was 7.18±0.03. Following the removal of luminal Na+, pH i decreased at a rate of 1.96±0.37 pH/min. In the presence of luminal amiloride (1mm), the rate of decrease of pH i was significantly less, 0.73±0.18 pH/min. Steady-state pH i decreased 0.18 pH units following the addition of amiloride (1mm) to the lumen (Na+ 140mm lumen and bath). When Na+ was removed from the basolateral side of the tubule, pH i decreased at a rate of 0.49±0.05 pH/min. The rate of decrease of pH i was significantly less in the presence of 1mm basolateral amiloride, 0.29±0.04 pH/min. Addition of 1mm amiloride to the basolateral side (Na+ 140mm lumen and bath) caused steady-state pH i to decrease significantly by 0.06 pH units. When pH i was acutely decreased to 5.87±0.02 following NH4Cl removal (lumen, bath), pH i failed to recover in the absence of Na+ (lumen, bath). Addition of 140mm Na+ to the lumen caused pH i to recover at a rate of 2.17±0.59 pH/min. The rate of pH i recovery was inhibited 93% by 1mm luminal amiloride. When 140mm Na+ was added to the basolateral side, pH i recovered only partially at 0.38±0.07 pH/min. Addition of 1mm basolateral amiloride inhibited the recovery of pH i , by 97%. The results demonstrate that the rabbit thin descending limb of long-loop nephrons possesses apical and basolateral Na+/N+ antiporters. In the steady state, the rate of Na+-dependent H+ flux across the apical antiporter exceeds the rate of Na+-dependent H+ flux via the basolateral antiporter. Recovery of pH i following acute intracellular acidification is Na+ dependent and mediated primarily by the luminal antiporter.  相似文献   

7.
Summary Cell K activity,a k, was measured in the short-circuited frog skin by simultaneous cell punctures from the apical surface with open-tip and K-selective microelectrodes. Strict criteria for acceptance of impalements included constancy of the open-tip microelectrode resistance, agreement within 3% of the fractional apical voltage measured with open-tip and K-selective microelectrodes, and constancy of the differential voltage recorded between the open-tip and the K microelectrodes 30–60 sec after application of amiloride or substitution of apical Na. Skins were bathed on the serosal surface with NaCl Ringer and, to reduce paracellular Cl conductance and effects of amiloride on paracellular conductance, with NaNO3 Ringer on the apical surface.Under control conditionsa k r was nearly constant among skins (mean±SD=92±8mM, 14 skins) in spite of a wide range of cellular currents (5 to 70 A/cm2). Cell current (and transcellular Na transport) was inhibited by either apical addition of amiloride or substitution of Na by other cations. Although in some experiments the expected small increase ina k r after inhibition of cell current was observed, on the average the change was not significant (98±11mM after amiloride, 101±12mM after Na substitution), even 30 min after the inhibition of cell current. The membrane potential, which in the control state ranged from –42 to –77 mV, hyperpolarized after inhibition of cell current, initially to –109±5mV, then depolarizing to a stable value (–88±5mV) after 15–25 min. At this time K was above equilibrium (E k=98±2mV), indicating that the active pump mechanism is still operating after inhibition of transcellular Na transport.The measurement ofa k r permitted the calculation of the passive K current and pump current under control conditions. assuming a constant current source with almost all of the basolateral conductance attributable to K. We found a significant correlation between pump current and cell current with a slope of 0.31, indicating that about one-third of the cell current is carried by the pump, i.e., a pump stoichiometry of 3Na/2K.  相似文献   

8.
Summary The basal-lateral surface of the epithelium of the urinary bladder of the toad (Bufo marinus) was depolarized by exposure of the serosal surface to 85mm KCL and 50mm sucrose. The extent of depolarization appeared to be virtually complete, as evaluated by the invariance in the transepithelial electrical potential difference and conductance on addition of nystatin (a monovalent cation ionophore) to the serosal medium. The Na-specific current (I Na) was defined as the current sensitive to the removal of Na from the mucosal medium or inhibitable by addition of amiloride to this medium. In the presence of the high K-sucrose serosal medium, rapid, serial, stepwise clamping of the transepithelial voltage (V) yielded a curvilinear dependence ofI Na onV; which is taken to represent theI–V curve of the apical Na channels. The constant field equation (Goldman, D.E. 1943;J. Gen. Physiol. 27:37) fits theI–V data points closely, allowing estimates to be made of the permeability to Na of the apical membrane (P Na) and of the intracellular Na activity (Na c ). Exposure of the apical surface to amiloride (5×10–7 m) decreasedP Na in proportion to the decrease inI Na (i.e., 70%) but decreased Na c only 25%. In contrast, an equivalent lent reduction inI Na elicited by exposure of the basallateral surface to ouabain was accompanied by only a 20% decrease inP Na and a sixfold increase in Na c . The effects of amiloride onP Na and ouabain on Na c are consistent with the primary pharmacological actions of these drugs. In addition,P Na appears to be under metabolic control, in that 2-deoxyglucose, a specific inhibitor of glycolysis, decreasedI Na andP Na proportionately, and lowered Na c marginally, effects indistinguishable from those obtained with amiloride.  相似文献   

9.
Summary In studies of apical membrane current-voltage relationships, in order to avoid laborious intracellular microelectrode techniques, tight epithelia are commonly exposed to high serosal K concentrations. This approach depends on the assumptions that high serosal K reduces the basolateral membrane resistance and potential to insignificantly low levels, so that transepithelial values can be attributed to the apical membrane. We have here examined the validity of these assumptions in frog skins (Rana pipiens pipiens). The skins were equilibrated in NaCl Ringer's solutions, with transepithelial voltageV t clamped (except for brief perturbations V t) at zero. The skins were impaled from the outer surface with 1.5m KCl-filled microelectrodes (R el>30 M). The transepithelial (short-circuit) currentl i and conductanceg t=–I t/V t, the outer membrane voltageV o (apical reference) and voltage-divider ratio (F o=V o/V t), and the microelectrode resistanceR el were recorded continuously. Intermittent brief apical exposure to 20 m amiloride permitted estimation of cellular (c) and paracellular (p) currents and conductances. The basolateral (inner) membrane conductance was estimated by two independent means: either from values ofg i andF o before and after amiloride or as the ratio of changes (–I c/V i) induced by amiloride. On serosal substitution of Na by K, within about 10 min,I c declined andg t increased markedly, mainly as a consequence of increase ing p. The basolateral membrane voltage (V i(=–V o) was depolarized from 75±4 to 2±1 mV [mean±sem (n=6)], and was partially repolarized following amiloride to 5±2 mV. The basolateral conductance increased in high serosal K, as estimated by both methods. Essentially complete depolarization of the basolateral membrane and increase in its conductance in response to high [K] were obtained also when the main serosal anion was SO4 or NO3 instead of Cl. On clampingV t over the range 0 to +125 mV in K2SO4-depolarized skins, the quasi-steady-stateV o V t relationship was linear, with a mean slope of 0.88±0.03. The above results demonstrate that, in a variety of conditions, exposure to high serosal K results in essentially complete depolarization of the basolateral membrane and a large increase in its conductance.  相似文献   

10.
Summary The intracellular electrolyte concentrations of the bullfrog corneal epithelium have been determined in thin freezedried cryosections using the technique of electron-microprobe analysis. Under control conditions, transepithelial potential short-circuited and either side of the cornea incubated in Conway's solution, the mean intracellular concentrations (in mmol/kg wet weight) were 8.0 for Na, 18.4 for Cl and 117.3 for K. These values are in good agreement with ion activities previously obtained by Reuss et al. (Am. J. Physiol. 244:C336–C347, 1983) under open-circuit conditions. From a comparison of the chemical concentrations and activities of Na and K a mean intracellular activity coefficient of 0.75 is calculated. For small ions no significant differences between nuclear and cytoplasmic concentration values were detectable. The Cl concentrations in the different epithelial layers were virtually identical and showed parallel changes at varying states of Cl secretion, suggesting that the epithelium represents a functional syncytium. For Na a concentration gradient between theouter and inner epithelial layer was observed, which can be accounted for by two different models of epithelial cooperation. The behavior of the intracellular Na and Cl concentrations after removal of Na, Cl or K from the outer or inner bathing medium provides support for a passive electrodiffusive Cl efflux across the apical membrane and a Na-coupled Cl uptake across the basolateral membrane. The results are inconclusive with regard to the exact mechanism of Cl uptake, indicating either a variable stoichiometry of the symporter or the presence of more than one transport system. Furthermore, a dependence of intracellular Cl on HCO3 and CO2 was observed. Extracellular measurements in corneal stroma demonstrated that ion concentrations in this space are in free equilibrium with the inner bath.  相似文献   

11.
Summary Isolated taste receptor cells from the frog tongue were investigated under whole-cell patch-clamp conditions. With the cytosolic potential head at –80 mV, more than 50% of the cells had a stationary inward Na current of 10 to 700 pA in Ringer's solution. This current was in some cells partially, in others completely, blockable by low concentrations of amiloride. With 110mm Na in the external and 10mm Na in the internal solution, the inhibition constant of amiloride was (at –80 mV) near 0.3 m. In some cells the amiloride-sensitive conductance was Na specific; in others it passed both Na and K. The Na/K selectivity (estimated from reversal potentials) varied between 1 and 100. The blockability bysmall concentrations of amiloride resembled that of channels found in some Na-absorbing epithelia, but the channels of taste cells showed a surprisingly large range of ionic specificities. Receptor cells, whichin situ express these channels in their apical membrane, may be competent to detect the taste quality salty. The same cells also express TTX-blockable voltage-gated Na channels.  相似文献   

12.
Summary WhenNecturus gallbladder epithelium is treated with ouabain the cells swell rapidly for 20–30 minutes then stabilize at a cell volume 30% greater than control. The cells then begin to shrink slowly to below control size. During the initial rapid swelling phase cell Na activity, measured with microelectrodes, rises rapidly. Calculations of the quantity of intracellular Na suggest that the volume increase is due to NaCl entry. Once the peak cell volume is achieved, the quantity of Na in the cell does not increase, suggesting that NaCl entry has been inhibited. We tested for inhibition of apical NaCl entry during ouabain treatment either by suddenly reducing the NaCl concentration in the mucosal bath or by adding bumetanide to the perfusate. Both maneuvers caused rapid cell shrinkage during the initial phase of the ouabain experiment, but had no effect on cell volume if performed during the slow shrinkage period. The lack of sensitivity to the composition of the mucosal bath during the shrinkage period occurred because of apparent feedback inhibition of NaCl entry. Another maneuver, reduction of the Na in the serosal bath to 10mm, also resulted in inhibition of apical NaCl uptake. The slow shrinkage which occurred after one or more hours of ouabain treatment was sensitive to the transmembrane gradients for K and Cl across the basolateral membrane and could be inhibited by bumetanide. Thus during pump inhibition inNecturus gallbladder epithelium cell Na and volume first increase due to continuing NaCl entry and then cell volume slowly decreases due to inhibition of the apical NaCl entry and activation of basolateral KCl exit.  相似文献   

13.
Summary Models for active Cl transport across epithelia are often assumed to be universal although they are based on detailed studies of a relatively small number of epithelia from vertebrate animals. Epithelial Cl transport is also important in many invertebrates, but little is known regarding its cellular mechanisms. We used short-circuit current, tracer fluxes and ion substitutions to investigate the basic properties of Cl absorption by locust hindgut, an epithelium which is ideally suited for transport studies. Serosal addition of 1mm adenosine 35-cyclic monophosphate (cAMP), a known stimulant of Cl transport in this tissue, increased short-circuit current (I sc) and net reabsorptive36Cl flux (J net Cl ) by 1000%. Cl absorption did not exhibit an exchange diffusion component and was highly selective over all anions tested except Br. Several predictions of Na- and HCO3-coupled models for Cl transport were tested: Cl-dependentI sc was not affected by sodium removal (<0.05mm) during the first 75 min. Also, a large stimulation ofJ net Cl was elicited by cAMP when recta were bathed for 6 hr in nominally Na-free saline (<0.001 to 0.2mm) and there was no correlation between Cl transport rate and the presence of micromolar quantities of Na contamination. Increased unidirectional influx of36Cl into rectal tissue during cAMP-stimulation was not accompanied by a comparable uptake of22Na.J net Cl was independent of exogenous CO2 and HCO3, but was strongly dependent on the presence of K. These results suggest that the major fraction of Cl transport across this insect epithelium occurs by an unusual K-dependent mechanism that does not directly require Na or HCO3.  相似文献   

14.
Summary Cl transport in apical membrane vesicles derived from bovine tracheal epithelial cells was studied using the Cl-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl) quinolinium. With an inwardly directed 50 mM Cl gradient at 23°C, the initial rate of Cl entry (J Cl) was increased significantly from 0.32±0.12 nmol · sec–1 · mg protein–1 (mean±sem) to 0.50±0.07 nmol · sec–1 · mg protein–1 when membrane potential was changed from 0 to +60 mV with K/valinomycin. At 37°C, with membrane potential clamped at 0 mV, there was a 34±7% (n=5) decrease inJ Cl from a control value of 0.37±0.03 nmol · sec–1 · mg protein–1 upon addition of 0.2mm diphenylamine-2-carboxylate. The following did not alterJ Cl significantly (J Cl values gives as percent change from control): 50mm cis Na (–1±5%), 0.1mm furosemide (–3±4%), 0.1mm furosemide in the presence of 50mm cis Na (–5±2%), 0.1mm H2DIDS (–18±9%), a 1.5 pH unit inwardly directed H gradient (–7±7%), and 0.1mm H2DIDS in the presence of a 1.5 unit pH gradient (4±18%). With inward 50mm anion gradients, the initial rates of Br and I entry (J Br andJ 1, respectively) were not significantly different fromJ Cl.J Cl was a saturable function of Cl concentration with apparentK d of 24mm and apparentV max of 0.54 nmol · sec–1 · mg protein–1. Measurement of the temperature dependence ofJ Cl yielded an activation energy of 5.0 kcal/mol (16–37°C). These results demonstrate that Cl transport in tracheal apical membrane vesicles is voltage-dependent and inhibited by diphenylamine-2-carboxylate. There is no significant contribution from the Na/K/2Cl, Na/Cl, or Cl/OH(H) transporters. The conductive pathway does not discriminate between Cl, Br, and I and is saturable. The low activation energy supports a pore-type mechanism for the conductance.  相似文献   

15.
Summary Knowledge of the voltage dependencies of apical and basolateral conductances is important in determining the factors that regulate transcellular transport. To gain this knowledge it is necessary to distinguish between cellular and paracellular currents and conductances. This is generally done by sequentially measuring transepithelial current/voltage (I t /V t ) and conductance/voltage (g t /V t ) relationships before and after the abolition of cellular sodium transport with amiloride. Often, however, there are variable time-dependent and voltage-dependent responses to voltage perturbation both in the absence and presence of amiloride, pointing to effects on the paracellular pathway. We have here investigated these phenomena systematically and found that the difficulties were significantly lessened by the use of an intermittent technique, measuringI t andg t before and after brief (<10 sec) exposure to amiloride at each setting ofV t .I/V relationships were characterized by these means in frog skins (Rana pipiens, Northern variety, andRana temporaria). Cellular current,I c , decreased with hyperpolarization (larger serosa positive clamps) ofV t . DerivedI c /V t relationships betweenV t =0 and 175 mV (serosa positive) were slightly concave upwards. Because values of cell conductance,g c , remained finite, it was possible to demonstrate reversal ofI c . Values of the reversal potentialV' averaged 156±14 (sd,n=18) mV. Simultaneous microelectrode measurements permitted also the calculation of apical and basolateral conductances,g a andg b . The apical conductance decreased monotonically with increasing positivity ofV t (andV a ). In contrast, in the range in which the basolateral conductance could be evaluated adequately (V t <125 mV),g b increased with more positive values ofV t (andV b ). That is, there was an inverse relation betweeng b and cellular current at the quasi-steady state, 10–30 sec after the transepithelial voltage step.  相似文献   

16.
Summary Na and Cl fluxes and short-circuit current (I sc) in rabbit ileum have been studied as a function of ionic concentrations in HCO3-free solutions. Both net Na flux (J net Na ) andI sc show similar saturation functions of [Na] at fixed [Cl]. They show no significant difference between zero and 112mm Na but at 140mm NaI sc is significantly greater than theJ net Na . Net Cl transport, secretion, is observed only at 140mm Na and is approximately equivalent to the difference between theI sc andJ net Na . The transcellular mucosa-to-serosa Na fluxes measured at 140 and 70mm Na do not differ significantly from the correspondingI sc. The net Cl flux varies with [Cl] at fixed [Na] whileI sc is virtually not affected by [Cl]. These results suggest that the absorptive Na transport process is electrogenic and responsible for theI sc and that the secretory fluxes of Na and Cl are coupled, require high [Na], vary with [Cl], and do not contribute toI sc. K-free solution abolishes theI sc after a prolonged lag. Finally, the effect of a low resistance shunt pathway on active Na absorption is examined with a four-compartment model.Deceased (October 16, 1974).  相似文献   

17.
Summary The electrical responses induced by external applications of neutral amino acids were used to determine whether different carriers are expressed in the membrane of embryonic epithelial cells ofXenopus laevis. Competition experiments were performed under voltage-clamp conditions at constant membrane potential.Gly,l-Ala,l-Pro,l-Ser,l-Asn andl-Gln generate electrical responses with similar apparent kinetic constants and compete for the same carrier. They are [Na] o and voltage-dependent, insensitive to variations in [Cl] o and [HCO3] o , inhibited by pH o changes, by amiloride and, for a large fraction of the current, by MeAIB. The increase in [K] o at constant and negative membrane potential reduces the response, whereas lowering [K] o augments it. l-Leu,l-Phe andl-Pro appear to compete for another carrier. They generate electrogenic responses insensitive to amiloride and MeAIB, as well as to alterations of membrane potential, [Na] o and [K] o . Lowering [Cl] o decreases their size, whereas increasing [HCO3] o at neutral pH o increases it.It is concluded that at least two and possibly three transport systems (A, ASC and L) are expressed in the membrane of the embryonic cells studied. An unexpected electrogenic character of the L system is revealed by the present study and seems to be indirectly linked to the transport function. l-Pro seems to be transported by system A or ASC in the presence of Na and by system L in the absence of Na. MeAIB induces an inward current.  相似文献   

18.
Summary Injection of small pulses of concentrate solutions of salts or drugs into the outer bathing fluid led to sudden increases of its solute concentration. Vigorous stirring of the outer bathing solution was used to minimize the thickness of the unstirred layer adjacent to the outer skin surface. Pulses of 1m NaCl injected into the outer compartment induced sharp increases of the SCC following a time course variable with the magnitude of the pulse and the particular condition of each skin. Comparison of the spontaneous decline of the SCC with the decline induced by a small dose of amiloride, where an increase inR was observed, indicates that the spontaneous decline cannot be explained simply as a reduction of the Na permeability of the apical membrane by self-inhibition of feedback inhibition of the apical membrane Na channels. Reduction of the driving force for Na movement into the epithelial cells must play an important role in the process. Reversibility of the amiloride inhibition of the SCC was highly dependent upon the ionic strength of the solution used to rinse and wash out the inhibitor from the outer skin surface. With H2O, the amiloride molecules washed out slowly as compared to NaCl or KCl solutions. Na or K have the same ability to dislodge the amiloride molecules from their binding sites. This effect is apparently of a purely electrostatic nature.  相似文献   

19.
Summary Conventional and Cl-selective liquid ion-exchanger intracellular microelectrodes were employed to study the effects of extracellular ionic substitutions on intracellular Cl activity (aCl i ) inNecturus gallbladder epithelium. As shown previously (Reuss, L., Weinman, S.A., 1979;J. Membrane Biol. 49:345), when the tissue was exposed to NaCl-Ringer on both sidesaCl i was about 30mm, i.e., much higher than the activity predicted from equilibrium distribution (aCleq) across either membrane (5–9mm). Removal of Cl from the apical side caused a reversible decrease ofaCl i towards the equilibrium value across the basolateral membrane. A new steady-stateaCl i was reached in about 10 min. Removal of Na from the mucosal medium or from both media also caused reversible decreases ofaCl i when Li, choline, tetramethylammonium or N-methyl-d-glucamine (NMDG) were employed to replace Na. During bilateral Na substitutions with choline the cells depolarized significantly. However, no change of cell potential was observed when NMDG was employed as Na substitute. Na replacements with choline or NMDG on the serosal side only did not changeaCl i . When K substituted for mucosal Na, the cells depolarized andaCl i rose significantly. Combinations of K for Na and Cl for SO4 substitutions showed that net Cl entry during cell depolarization can take place across either membrane. The increase ofaCl i in depolarized cells exposed to K2SO4-Ringer on the mucosal side indicates that the basolateral membrane Cl permeability, (P Cl) increased. These results support the hypothesis that NaCl entry at the apical membrane occurs by an electroneutral mechanism, driven by the Na electrochemical gradient. In addition, we suggest that Cl entry during cell depolarization is downhill and involves an increase of basolateral membraneP Cl.  相似文献   

20.
The cellular model of short chain fatty acid stimulation of electroneutral Na-Cl absorption in large intestine proposes that SCFA, following its uptake across the apical membrane, recycles and is coupled to functional Na-H and Cl-short chain fatty acid exchanges. To establish the presence of a Cl-butyrate exchange (used as a model short chain fatty acid), studies of 36Cl and 14C-butyrate uptake across apical membrane vesicles of rat distal colon were performed. An outward butyrate-gradient stimulated transient accumulation of 36Cl uptake that was not inhibited by pH clamping with valinomycin (a K ionophore) and FCCP (a proton ionophore). Outward butyrate-gradient-stimulated 36Cl uptake was inhibited by 4,4-diisothiocyanatostilbene2,2-disulfonic acid (DIDS) with a half-maximal inhibitory concentration (IC50) of 68.4 m, and was saturated by both increasing extravesicular Cl concentration (K m for Cl of 26.8 ±3.4 mm and a V max of 12.4±0.6 nmol/mg protein·9 sec) and increasing intravesicular butyrate concentration (K m for butyrate of 5.9 mm and a V max for Cl of 5.9 nmol/mg protein · 9 sec). 36Cl uptake was also stimulated by outward gradients of other short chain fatty acids (e.g., propionate, acetate and formate). In contrast, an outward Cl gradient failed to enhance 14C-butyrate uptake. Extravesicular Cl more than extravesicular butyrate enhanced 36Cl efflux from apical membrane vesicles. These studies provide compelling evidence for the presence of an electroneutral, pH-activated, Cl-butyrate exchange which in concert with Na-H exchange is the mechanism by which butyrate stimulates electroneutral Na-Cl absorption.Abbreviations used AMV apical membrane vesicles - BLMV basolateral membrane vesicles - DIDS 4,4-diisothiocyanatostilbene 2,2-disulfonic acid - FCCP carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone - MES 1-[N-morpholino]ethanesulfonic acid - NMG N-memyl-d-glucamine - SCF Ashort chain fatty acid This study was supported in part by a Public Health Service research Grant (DK 14669) provided by the National Institute of Diabetes, Digestive and Kidney Diseases. Ms. Mary Guidone provided excellent secretarial assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号