共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A novel tyrosine phosphorylation site in protein kinase D contributes to oxidative stress-mediated activation 总被引:1,自引:0,他引:1
Protein kinase D1 (PKD1) is a mediator of oxidative stress signaling where it regulates cellular detoxification and survival. Critical for the regulation of PKD1 activity in response to oxidative stress are Src- and Abl-mediated tyrosine phosphorylations that eventually lead to protein kinase Cdelta (PKCdelta)-mediated activation of PKD1. Here we identify Tyr95 in PKD1 as a previously undescribed phosphorylation site that is regulated by oxidative stress. Our data suggest that PKD1 phosphorylation at Tyr95 generates a binding motif for PKCdelta, and that oxidative stress-mediated PKCdelta/PKD interaction results in PKD1 activation loop phosphorylation and activation. We further analyzed all PKD isoforms for this mechanism and show that PKD enzymes PKD1 and PKD2 are targets for PKCdelta in response to oxidative stress, and that PKD3 is not a target because it lacks the relevant tyrosine residue that generates a PKCdelta interaction motif. 相似文献
3.
Interferons induce tyrosine phosphorylation of the eIF2alpha kinase PKR through activation of Jak1 and Tyk2 下载免费PDF全文
The interferon (IFN)-inducible, double-stranded RNA activated protein kinase (PKR) is a dual-specificity kinase, which has an essential role in the regulation of protein synthesis by phosphorylating the translation eukaryotic initiation factor 2 (eIF2). Here, we show the tyrosine (Tyr) phosphorylation of PKR in response to type I or type II IFNs. We show that PKR physically interacts with either Jak1 or Tyk2 in unstimulated cells and that these interactions are increased in IFN-treated cells. We also show that PKR acts as a substrate of activated Jaks, and is phosphorylated at Tyr 101 and Tyr 293 both in vitro and in vivo. Moreover, we provide strong evidence that both the induction of eIF2alpha phosphorylation and inhibition of protein synthesis by IFN are impaired in cells lacking Jak1 or Tyk2, which corresponds to a lack of induction of PKR tyrosine phosphorylation. We conclude that PKR tyrosine phosphorylation provides an important link between IFN signalling and translational control through the regulation of eIF2alpha phosphorylation. 相似文献
4.
5.
6.
7.
8.
Protein synthesis consumes a high proportion of the metabolic energy of mammalian cells, and most of this is used by peptide chain elongation. An important regulator of energy supply and demand in eukaryotic cells is the AMP-activated protein kinase (AMPK). The rate of peptide chain elongation can be modulated through the phosphorylation of eukaryotic elongation factor (eEF) 2, which inhibits its activity and is catalyzed by a specific calcium/calmodulin-dependent protein kinase termed eEF2 kinase. Here we show that AMPK directly phosphorylates eEF2 kinase, and we identify the major site of phosphorylation as Ser-398 in a regulatory domain of eEF2 kinase. AMPK also phosphorylates two other sites (Ser-78 and Ser-366) in eEF2 kinase in vitro. We develop appropriate phosphospecific antisera and show that phosphorylation of Ser-398 in eEF2 kinase is enhanced in intact cells under a range of conditions that activate AMPK and increase the phosphorylation of eEF2. Ser-78 and Ser-366 do not appear to be phosphorylated by AMPK within cells. Although cardiomyocytes appear to contain a distinct isoform of eEF2 kinase, it also contains a site corresponding to Ser-398 that is phosphorylated by AMPK in vitro. Stimuli that activate AMPK and increase eEF2 phosphorylation within cells increase the activity of eEF2 kinase. Thus, AMPK and eEF2 kinase may provide a key link between cellular energy status and the inhibition of protein synthesis, a major consumer of metabolic energy. 相似文献
9.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease resulting from an expanded CAG repeat in the SCA1 gene that leads to an expanded polyglutamine tract in the gene product. Previous studies have demonstrated that serine at site 776 is phosphorylated [E.S. Emiamian, M.D. Kaytor, L.A. Duvick, T. Zu, S.K. Tousey, H.Y. Zoghbi, H.B. Clark, H.T. Orr, Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice, Neuron 38 (2003) 375-387.]. Studies of ataxin-1 S776 and serine mutated to an alanine, A776, have also shown differential protein-protein interactions and reduced neurodegeneration [H.K. Chen, P. Fernandez-Funez, S.F. Acevedo, Y.C. Lam, M.D. Kaytor, M.H. Fernandez, A. Aitken, E.M. Skoulakis, H.T. Orr, J. Botas, H.Y. Zoghbi, Interaction of Akt_phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1.]. However, mutation of the site serine 776 to an alanine did not abolish all phosphorylation of the protein ataxin-1, suggesting the presence of additional phosphorylation sites [E.S. Emiamian, M.D. Kaytor, L.A. Duvick, T. Zu, S.K. Tousey, H.Y. Zoghbi, H.B. Clark, H.T. Orr, Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice, Neuron 38 (2003) 375-387.]. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and mutational analysis demonstrated a novel phosphorylation site at serine 239 of ataxin-1. 相似文献
10.
Direct identification of tyrosine 474 as a regulatory phosphorylation site for the Akt protein kinase 总被引:4,自引:0,他引:4
Conus NM Hannan KM Cristiano BE Hemmings BA Pearson RB 《The Journal of biological chemistry》2002,277(41):38021-38028
Understanding the regulation of Akt has been of major interest for elucidating the control of normal cellular physiology as well as malignant transformation. The paradigm for activation of Akt involves phosphatidylinositol 3-kinase-dependent membrane localization followed by activating phosphorylation of Thr-308 and Ser-473. Many of the activating signals for Akt involve the stimulation of receptor and non-receptor tyrosine kinases, and the most potent activator known is the tyrosine phosphatase inhibitor pervanadate, highlighting a possible role for tyrosine phosphorylation in the regulation of the enzyme. In this study we show that activation of Akt by pervanadate or serum is associated with tyrosine phosphorylation of Akt. In addition, in SKOV3 ovarian carcinoma cells that exhibit high basal levels of Akt activity, Akt was tyrosine-phosphorylated in the basal state, and this phosphorylation was further enhanced by both pervanadate and insulin-like growth factor-1. We have used NH(2)-terminal sequencing and phosphate release analysis to directly identify Tyr-474 as the site of tyrosine phosphorylation. Substitution of Tyr-474 with phenylalanine abolished tyrosine phosphorylation of Akt and resulted in up to 55% inhibition of Akt activation, indicating phosphorylation at Tyr-474 is required for full activation of the kinase. Our data identifies a novel regulatory mechanism for this pleiotropic enzyme that may be applicable to the AGC family of protein kinases given the conserved nature of the COOH-terminal hydrophobic motif containing Tyr-474. 相似文献
11.
Waldron RT Whitelegge JP Faull KF Rozengurt E 《Biochemical and biophysical research communications》2007,356(2):361-367
Protein kinase D (PKD) phosphorylates the c-jun amino-terminal in vitro at site(s) distinct from JNK [C. Hurd, R.T. Waldron, E. Rozengurt, Protein kinase D complexes with c-jun N-terminal kinase via activation loop phosphorylation and phosphorylates the c-jun N-terminus, Oncogene 21 (2002) 2154-2160], but the sites have not been identified. Here, metabolic (32)P-labeling of c-jun protein in COS-7 cells indicated that PKD phosphorylates c-jun in vivo at a site(s) between aa 43-93, a region containing important functional elements. On this basis, the PKD-mediated phosphorylation site(s) was further characterized in vitro using GST-c-jun fusion proteins. PKD did not incorporate phosphate into Ser63 and Ser73, the JNK sites in GST-c-jun(1-89). Rather, PKD and JNK could sequentially phosphorylate distinct site(s) simultaneously. By mass spectrometry of tryptic phosphopeptides, Ser58 interposed between the JNK-binding portion of the delta domain and the adjacent TAD1 was identified as a prominent site phosphorylated in vitro by PKD. These data were further supported by kinase reactions using truncations or point-mutations of GST-c-jun. Together, these data suggest that PKD-mediated phosphorylation modulates c-jun at the level of its N-terminal functional domains. 相似文献
12.
Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain 下载免费PDF全文
Jak tyrosine kinases have a unique domain structure containing a kinase domain (JH1) adjacent to a catalytically inactive pseudokinase domain (JH2). JH2 is crucial for inhibition of basal Jak activity, but the mechanism of this regulation has remained elusive. We show that JH2 negatively regulated Jak2 in bacterial cells, indicating that regulation is an intrinsic property of Jak2. JH2 suppressed basal Jak2 activity by lowering the V(max) of Jak2, whereas JH2 did not affect the K(m) of Jak2 for a peptide substrate. Three inhibitory regions (IR1-3) within JH2 were identified. IR3 (residues 758-807), at the C terminus of JH2, directly inhibited JH1, suggesting an inhibitory interaction between IR3 and JH1. Molecular modeling of JH2 showed that IR3 could form a stable alpha-helical fold, supporting that IR3 could independently inhibit JH1. IR2 (725-757) in the C-terminal lobe of JH2, and IR1 (619-670), extending from the N-terminal to the C-terminal lobe, enhanced IR3-mediated inhibition of JH1. Disruption of IR3 either by mutations or a small deletion increased basal Jak2 activity, but abolished interferon-gamma-inducible signaling. Together, the results provide evidence for autoinhibition of a Jak family kinase and identify JH2 regions important for autoregulation of Jak2. 相似文献
13.
Beta 2 integrin-dependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils 总被引:8,自引:3,他引:8 下载免费PDF全文
《The Journal of cell biology》1994,126(4):1111-1121
Stimulation of adherent human neutrophils (PMN) with tumor necrosis factor (TNF) triggers protein tyrosine phosphorylation (Fuortes, M., W. W. Jin, and C. Nathan. 1993. J. Cell Biol. 120:777-784). We investigated the dependence of this response on beta 2 integrins by using PMN isolated from a leukocyte adhesion deficiency (LAD) patient, which do not express beta 2 integrins, and by plating PMN on surface bound anti-beta 2 (CD18) antibodies. Protein tyrosine phosphorylation increased in PMN plated on fibrinogen and this phosphorylation was enhanced by TNF. Triggering of protein tyrosine phosphorylation did not occur in LAD PMN plated on fibrinogen either in the absence or the presence of TNF. Surface bound anti-CD18, but not isotype-matched anti- Class I major histocompatibility complex (MHC) antigens, antibodies triggered tyrosine phosphorylation in normal, but not in LAD PMN. As the major tyrosine phosphorylated proteins we found in our assay conditions migrated with an apparent molecular mass of 56-60 kD, we investigated whether beta 2 integrins are implicated in activation of members of the src family of intracellular protein-tyrosine kinases. We found that the fgr protein-tyrosine kinase (p58fgr) activity, and its extent of phosphorylation in tyrosine, in PMN adherent to fibrinogen, was enhanced by TNF. Activation of p58fgr in response to TNF was evident within 10 min of treatment and increased with times up to 30 min. Also other activators of beta 2 integrins such as phorbol-12- myristate 13-acetate (PMA), and formyl methionyl-leucyl-phenylalanine (FMLP), induced activation of p58fgr kinase activity. Activation of p58fgr kinase activity, and phosphorylation in tyrosine, did not occur in PMN of a LAD patient in response to TNF. Soluble anti-CD18, but not anti-Class I MHC antigens, antibodies inhibited activation of p58fgr kinase activity in PMN adherent to fibrinogen in response to TNF, PMA, and FMLP. These findings demonstrate that, in PMN, beta 2 integrins are implicated in triggering of protein tyrosine phosphorylation, and establish a link between beta 2 integrin-dependent adhesion and the protein tyrosine kinase fgr in cell signaling. 相似文献
14.
Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. 总被引:7,自引:9,他引:7 下载免费PDF全文
J Feng B A Witthuhn T Matsuda F Kohlhuber I M Kerr J N Ihle 《Molecular and cellular biology》1997,17(5):2497-2501
The Janus protein tyrosine kinases (Jaks) play critical roles in transducing growth and differentiation signals emanating from ligand-activated cytokine receptor complexes. The activation of the Jaks is hypothesized to occur as a consequence of auto- or transphosphorylation on tyrosine residues associated with ligand-induced aggregation of the receptor chains and the associated Jaks. In many kinases, regulation of catalytic activity by phosphorylation occurs on residues within the activation loop of the kinase domain. Within the Jak2 kinase domain, there is a region that has considerable sequence homology to the regulatory region of the insulin receptor and contains two tyrosines, Y1007 and Y1008, that are potential regulatory sites. In the studies presented here, we demonstrate that among a variety of sites, Y1007 and Y1008 are sites of trans- or autophosphorylation in vivo and in in vitro kinase reactions. Mutation of Y1007, or both Y1007 and Y1008, to phenylalanine essentially eliminated kinase activity, whereas mutation of Y1008 to phenylalanine had no detectable effect on kinase activity. The mutants were also examined for the ability to reconstitute erythropoietin signaling in gamma2 cells, which lack Jak2. Consistent with the kinase activity, mutation of Y1007 to phenylalanine eliminated the ability to restore signaling. Moreover, phosphorylation of a kinase-inactive mutant (K882E) was not detected, indicating that Jak2 activation during receptor aggregation is dependent on Jak2 and not another receptor-associated kinase. The results demonstrate the critical role of phosphorylation of Y1007 in Jak2 regulation and function. 相似文献
15.
16.
Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. Identification of a novel tyrosine kinase as a major substrate. 总被引:21,自引:0,他引:21
Neuropeptide-stimulated tyrosine phosphorylation of specific components in Swiss 3T3 cells was investigated using monoclonal antibodies directed against the src transformation-associated substrates p125 focal adhesion kinase (FAK), a novel type of cytosolic tyrosine kinase, and p130. Treatment of Swiss 3T3 cells with the mitogenic peptides bombesin, vasopressin, and endothelin caused a striking increase in the tyrosine phosphorylation of p125FAK, as judged either by anti-phosphotyrosine (anti-Tyr(P)) Western blots of anti-p125FAK immunoprecipitates, or by anti-p125FAK immunoblots of anti-Tyr(P) immunoprecipitates. Bombesin-stimulated tyrosine phosphorylation of p125FAK was detectable within seconds and concentration-dependent (half-maximum effect of 0.3 nM). Neuropeptides also stimulated the tyrosine phosphorylation of a second component of M(r) 130,000, previously identified as the major p130 phosphotyrosyl protein in src-transformed cells. Bombesin stimulated p130 tyrosine phosphorylation with kinetics and concentration dependence similar to those observed for p125FAK. This is the first report to identify substrates for neuropeptide-stimulated tyrosine phosphorylation; the finding that one of these substrates is a tyrosine kinase suggests the existence of a novel signal transduction pathway in the action of mitogenic neuropeptides. 相似文献
17.
The cytoplasmic tyrosine kinase Pyk2 as a novel effector of fibroblast growth factor receptor 3 activation 总被引:5,自引:0,他引:5
Meyer AN Gastwirt RF Schlaepfer DD Donoghue DJ 《The Journal of biological chemistry》2004,279(27):28450-28457
Activating mutations within fibroblast growth factor receptor 3 (FGFR3), a receptor tyrosine kinase, are responsible for human skeletal dysplasias including achondroplasia and the neonatal lethal syndromes thanatophoric dysplasia types I and II. Several of these same FGFR3 mutations have also been identified somatically in human cancers, including multiple myeloma, bladder carcinoma, and cervical cancer. The molecular pathways exploited by FGFR3 to stimulate abnormal proliferation during neoplasia are unclear. The nonreceptor protein-tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2) has been shown previously to regulate apoptosis in multiple myeloma cells. Here we describe a novel interaction between FGFR3 and Pyk2, mediated by the juxtamembrane domain of FGFR3 and the kinase domain of Pyk2. Within the FGFR family, Pyk2 also interacted significantly with FGFR2. Overexpression of Pyk2 alone led to its spontaneous activation and tyrosine phosphorylation, resulting in activation of Stat5B, indicated by the reporter GFP-Stat5B. These effects were completely dependent upon Tyr(402), the autophosphorylation site of Pyk2, which allows recruitment of Src family members for further activating phosphorylations at other sites on Pyk2. In the presence of activated FGFR3, the activation of Pyk2 itself became independent of Tyr(402), indicating that FGFR3 activation circumvents the requirement for c-Src recruitment at Tyr(402) of Pyk2. We also examined the role of the tyrosine phosphatase Shp2 in antagonizing Pyk2 activation. Taken together, these results suggest that signaling pathways regulated by FGFR3 may converge with Pyk2-dependent pathways to provide maximal activation of Stat5B. 相似文献
18.
Haan S Margue C Engrand A Rolvering C Schmitz-Van de Leur H Heinrich PC Behrmann I Haan C 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(2):998-1007
Jak1 is a tyrosine kinase that noncovalently forms tight complexes with a variety of cytokine receptors and is critically involved in signal transduction via cytokines. Jaks are predicted to have a 4.1, ezrin, radixin, moesin (FERM) domain at their N terminus. FERM domains are composed of three structurally unrelated subdomains (F1, F2, and F3) which are in close contact to one another and form the clover-shaped FERM domain. We generated a model structure of the Jak1 FERM domain, based on solved FERM structures and the alignments with other FERM domains. To destabilize different subdomains and to uncover their exact function, we mutated specific hydrophobic residues conserved in FERM domains and involved in hydrophobic core interactions. In this study, we show that the structural integrity of the F2 subdomain of the FERM domain of Jak1 is necessary to bind the IFN-gammaRalpha. By mutagenesis of hydrophobic residues in the hydrophobic core between the three FERM subdomains, we find that the structural context of the FERM domain is necessary for the inhibition of Jak1 phosphorylation. Thus, FERM domain mutations can have repercussions on Jak1 function. Interestingly, a mutation in the kinase domain (Jak1-K907E), known to abolish the catalytic activity, also leads to an impaired binding to the IFN-gammaRalpha when this mutant is expressed at endogenous levels in U4C cells. Our data show that the structural integrity of both the FERM domain and of the kinase domain is essential for both receptor binding and catalytic function/autoinhibition. 相似文献
19.
20.
A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin 总被引:11,自引:0,他引:11 下载免费PDF全文
Eukaryotic elongation factor 2 (eEF2) kinase is an unusual calcium- and calmodulin-dependent protein kinase that is regulated by insulin through the rapamycin-sensitive mTOR pathway. Here we show that insulin decreases the ability of eEF2 kinase to bind calmodulin in a rapamycin-sensitive manner. We identify a novel phosphorylation site in eEF2 kinase (Ser78) that is located immediately next to its calmodulin-binding motif. Phosphorylation of this site is increased by insulin in a rapamycin-sensitive fashion. Regulation of the phosphorylation of Ser78 also requires amino acids and the protein kinase phosphoinositide-dependent kinase 1. Mutation of this site to alanine strongly attenuates the effects of insulin and rapamycin both on the binding of calmodulin to eEF2 kinase and on eEF2 kinase activity. Phosphorylation of Ser78 is thus likely to link insulin and mTOR signaling to the control of eEF2 phosphorylation and chain elongation. This site is not a target for known kinases in the mTOR pathway, e.g., the S6 kinases, implying that it is phosphorylated by a novel mTOR-linked protein kinase that serves to couple hormones and amino acids to the control of translation elongation. eEF2 kinase is thus a target for mTOR signaling independently of previously known downstream components of the pathway. 相似文献