首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
In most primate species, females remain in the natal group with kin while males disperse away from kin around the time of puberty. Philopatric females bias their social behavior toward familiar maternal and paternal kin in several species, but little is known about kin bias in the dispersing sex. Male dispersal is likely to be costly because males encounter an increased risk of predation and death, which might be reduced by dispersing together with kin and/or familiar males (individuals that were born and grew up in same natal group) or into a group containing kin and/or familiar males. Here we studied the influence of kinship on familiar natal migrant rhesus macaques (Macaca mulatta) on Cayo Santiago, Puerto Rico, by combining demographic, behavioral, and genetic data. Our data suggest that kinship influences spatial proximity between recent natal immigrants and males familiar to them. Immigrants were significantly nearer to more closely related familiar males than to more distantly related individuals. Within a familiar subgroup, natal migrants were significantly closer to maternal kin, followed by paternal kin, then non-kin, and finally to males related via both the maternal and paternal line. Spatial proximity between natal immigrants and familiar males did not decrease over time in the new group, suggesting that there is no decline in associations between these individuals within the first months of immigration. Overall, our results might indicate that kinship is important for the dispersing sex, at least during natal dispersal when kin are still available.  相似文献   

2.
Cooperatively breeding birds have been used frequently to study sex allocation because the adaptive value of the sexes partly depends upon the costs and benefits for parents of receiving help. I examined patterns of directional sex allocation in relation to maternal condition (Trivers-Willard hypothesis), territory quality (helper competition hypothesis), and the number of available helpers (helper repayment hypothesis) in the superb starling, Lamprotornis superbus, a plural cooperative breeder with helpers of both sexes. Superb starlings biased their offspring sex ratio in relation to prebreeding rainfall, which was correlated with maternal condition. Mothers produced relatively more female offspring in wetter years, when they were in better condition, and more male offspring in drier years, when they were in poorer condition. There was no relationship between offspring sex ratio and territory quality or the number of available helpers. Although helping was male biased, females had a greater variance in reproductive success than males. These results are consistent with the Trivers-Willard hypothesis and suggest that although females in most cooperatively breeding species make sex allocation decisions to increase their future direct reproductive success, female superb starlings appear to base this decision on their current body condition to increase their own inclusive fitness.  相似文献   

3.
Summary Sex ratios of a population and of litters were sampled in muskrats in Ontario, Canada. Sex ratios of litters sampled from nests were male biased (54% male). Until weaning, no differential costs of producing and rearing male and female young were identified that could account for this greater production of males. Following weaning, however, male-biased dispersal of juveniles from their natal site and more frequent acquisition by females of these sites as breeding sites the following year suggested a greater investment by adult females in female young. Therefore, competition between female siblings for the acquisition of their natal site may be sufficient to result in the greater production of males. In addition, the simultaneous occupation of, and competition between, siblings and parents for the resources of the natal home range may not be necessary for local resource competition to result in a greater production of the dispersing sex. Greater-than-expected binomial variance in sex ratios of litters suggested that adjustment of sex-ratios occurred. However, we were unable to associate the adjustment of litter sex ratios with changes in maternal condition. The greater production of males and the predominance of monogamous associations between adults in this population may have lead to slightly greater variation in male fitness than female fitness. Therefore, a female in better-than-average condition may have benefited by producing more males. Similarly, a lower cost of producing dispersing males may allow nutritionally-stressed females to reduce their total expenditure on offspring by producing more males. Because these experiments were non-manipulative, maternal condition may not have varied sufficiently during this study to detect adjustments of litter sex ratios resulting from either of the above mechanisms acting separately, but the combined effects of small differences in matermal condition and selective pressures operating in the same direction may have resulted in the observed deviation from the binomial.  相似文献   

4.
The outcome of sexual conflict can depend on the social environment, as males respond to changes in the inclusive fitness payoffs of harmfulness and harm females less when they compete with familiar relatives. Theoretical models also predict that if limited male dispersal predictably enhances local relatedness while maintaining global competition, kin selection can produce evolutionary divergences in male harmfulness among populations. Experimental tests of these predictions, however, are rare. We assessed rates of dispersal in female and male seed beetles Callosobruchus maculatus, a model species for studies of sexual conflict, in an experimental setting. Females dispersed significantly more often than males, but dispersing males travelled just as far as dispersing females. Next, we used experimental evolution to test whether limiting dispersal allowed the action of kin selection to affect divergence in male harmfulness and female resistance. Populations of C. maculatus were evolved for 20 and 25 generations under one of three dispersal regimens: completely free dispersal, limited dispersal and no dispersal. There was no divergence among treatments in female reproductive tract scarring, ejaculate size, mating behaviour, fitness of experimental females mated to stock males or fitness of stock females mated to experimental males. We suggest that this is likely due to insufficient strength of kin selection rather than a lack of genetic variation or time for selection. Limited dispersal alone is therefore not sufficient for kin selection to reduce male harmfulness in this species, consistent with general predictions that limited dispersal will only allow kin selection if local relatedness is independent of the intensity of competition among kin.  相似文献   

5.
Sex allocation theory predicts that a female should produce the offspring of the sex that most increases her own fitness. For polygynous species, this means that females in superior condition should bias offspring production toward the sex with greater variation in lifetime reproductive success, which is typically males. Captive mammal populations are generally kept in good nutritional condition with low levels of stress, and thus populations of polygynous species might be expected to have birth sex ratios biased toward males. Sex allocation theory also predicts that when competition reduces reproductive success of the mother, she should bias offspring toward whichever sex disperses. These predicted biases would have a large impact on captive breeding programs because unbalanced sex ratios may compromise use of limited space in zoos. We examined 66 species of mammals from three taxonomic orders (primates, ungulates, and carnivores) maintained in North American zoos for evidence of birth sex ratio bias. Contrary to our expectations, we found no evidence of bias toward male births in polygynous populations. We did find evidence that birth sex ratios of primates are male biased and that, within primates, offspring sex was biased toward the naturally dispersing sex. We also found that most species experienced long contiguous periods of at least 7 years with either male‐ or female‐biased sex ratios, owing in part to patterns of dispersal (for primates) and/or to stochastic causes. Population managers must be ready to compensate for significant biases in birth sex ratio based on dispersal and stochasticity. Zoo Biol 19:11–25, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

6.
Characterizing animal dispersal patterns and the rational behind individuals’ transfer choices is a long‐standing question of interest in evolutionary biology. In wild western gorillas (Gorilla gorilla), a one‐male polygynous species, previous genetic findings suggested that, when dispersing, females might favor groups with female kin to promote cooperation, resulting in higher‐than‐expected within‐group female relatedness. The extent of male dispersal remains unclear with studies showing conflicting results. To investigate male and female dispersal patterns and extragroup paternity, we analyzed long‐term field observations, including female spatial proximity data, together with genetic data (10 autosomal microsatellites) on individuals from a unique set of four habituated western gorilla groups, and four additional extragroup males (49 individuals in total). The majority of offspring (25 of 27) were sired by the group male. For two offspring, evidence for extragroup paternity was found. Contrarily to previous findings, adult females were not significantly more related within groups than across groups. Consistently, adult female relatedness within groups did not correlate with their spatial proximity inferred from behavioral data. Adult females were similarly related to adult males from their group than from other groups. Using R ST statistics, we found significant genetic structure and a pattern of isolation by distance, indicating limited dispersal in this species. Comparing relatedness among females and among males revealed that males disperse farer than females, as expected in a polygamous species. Our study on habituated western gorillas shed light on the dispersal dynamics and reproductive behavior of this polygynous species and challenge some of the previous results based on unhabituated groups.  相似文献   

7.
Sex allocation theory predicts that females should bias their reproductive investment towards the sex generating the greatest fitness returns. The fitness of male offspring is often more dependent upon maternal investment, and therefore, high‐quality mothers should invest in sons. However, the local resource competition hypothesis postulates that when offspring quality is determined by maternal quality or when nest site and maternal quality are related, high‐quality females should invest in the philopatric sex. Waterfowl – showing male‐biased size dimorphism but female‐biased philopatry – are ideal for differentiating between these alternatives. We utilized molecular sexing methods and high‐resolution maternity tests to study the occurrence and fitness consequences of facultative sex allocation in Barrow's goldeneyes (Bucephala islandica). We determined how female structural size, body condition, nest‐site safety and timing of reproduction affected sex allocation and offspring survival. We found that the overall sex ratio was unbiased, but in line with the local resource competition hypothesis, larger females produced female‐biased broods and their broods survived better than those of smaller females. This bias occurred despite male offspring being larger and tending to have lower post‐hatching survival. The species shows strong female breeding territoriality, so the benefit of inheriting maternal quality by philopatric daughters may exceed the potential mating benefit for sons of high‐quality females.  相似文献   

8.
We investigate the evolution of sex allocation and dispersal in a two-habitat environment using a game theoretic analysis. One habitat is of better quality than the other and increased habitat quality influences the competitive ability of offspring in a sex-specific manner. Unlike previous work, we allow incomplete mixing of the population during mating. We discuss three special cases involving the evolution of sex allocation under fixed levels of dispersal between habitats. In these special cases, stable sex-allocation behaviors can be both biased and unbiased. When sex-allocation behavior and dispersal rates co-evolve we identify two basic outcomes. First-when sex-specific differences in the consequences of spatial heterogeneity are large-we predict the evolution of biased sex-allocation behavior in both habitats, with dispersal by males in one direction and dispersal by females in the other direction. Second-when sex-specific differences are small-unbiased sex-allocation is predicted with no dispersal between habitats.  相似文献   

9.
Animal dispersal is associated with diverse costs and benefits that vary among individuals based on phenotype and ecological conditions. For example, females may disperse when males benefit more from defending territories in familiar environments. Similarly, size differences in dispersal propensity may occur when dispersal costs are size-dependent. When individuals do disperse, they may adopt behavioral strategies that minimize dispersal costs. Dispersing fish, for example, may travel within shoals to reduce predation risks. Further, kin shoaling may augment inclusive fitness by reducing predation of relatives. However, studies are lacking on the role of kin shoaling in dispersal. We explored how sex and size influence dispersal and kin shoaling in the cichlid Neolamprologus caudopunctatus. We microsatellite genotyped over 900 individuals from two populations separated by a potential dispersal barrier, and documented patterns of population structure, migration and within-shoal relatedness. Genetic differentiation across the barrier was greater for smaller than larger fish, suggesting larger fish had dispersed longer distances. Females exhibited weaker genetic differentiation and 11 times higher migration rates than males, indicating longer-distance female-biased dispersal. Small females frequently shoaled with siblings, possibly offsetting dispersal costs associated with higher predation risks. In contrast, small males appeared to avoid kin shoaling, possibly to avoid local resource competition. In summary, long-distance dispersal in N. caudopunctatus appears to be female-biased, and kin-based shoaling by small females may represent a behavioral adaptation that reduces dispersal costs. Our study appears to be the first to provide evidence that sex differences in dispersal influence sex differences in kin shoaling.  相似文献   

10.
Male parents face a choice: should they invest more in caring for offspring or in attempting to mate with other females? The most profitable course depends on the intensity of competition for mates, which is likely to vary with the population sex ratio. However, the balance of pay‐offs may vary among individual males depending on their competitive prowess or attractiveness. We tested the prediction that sex ratio and size of the resource holding male provide cues regarding the level of mating competition prior to breeding and therefore influence the duration of a male's biparental caring in association with a female. Male burying beetles, Nicrophorus vespilloides were reared, post‐eclosion, in groups that differed in sex ratio. Experimental males were subsequently translocated to the wild, provided with a breeding resource (carcass) and filmed. We found no evidence that sex ratio cues prior to breeding affected future parental care behaviour but males that experienced male‐biased sex ratios took longer to attract wild mating partners. Smaller males attracted a higher proportion of females than did larger males, securing significantly more monogamous breeding associations as a result. Smaller males thus avoided competitive male–male encounters more often than larger males. This has potential benefits for their female partners who avoid both intrasexual competition and direct costs of higher mating frequency associated with competing males.  相似文献   

11.
I investigated the effect of male mate competition and inbreeding avoidance on natal dispersal of chipmunks by longitudinally monitoring known individuals from 1986 to 1990. Natal males exhibited greater absolute and effective dispersal distances but dispersed at the same proportion as natal females. Recruitment of juvenile males was negatively affected by density of resident males, but there was no evidence of local mate competition among male kin. Analysis of the spatial distribution of neighbors showed that natal males settled farther from their mothers than did their female siblings and farther than unrelated juvenile males. In addition, mothers apparently tolerated daughters as close neighbors and occasionally shared den sites with grandprogeny. Sexually mature males were never neighbors of their mothers and were never observed at maternal mating bouts. Males may disperse to improve reproductive opportunities by avoiding competition with resident males, and by increasing access to unrelated females. Maternal tolerance of daughters but not sons may result in the close affiliation between mothers and daughters, and indirectly contribute to dispersal of natal males. Hence male-biased dispersal could be a consequence of mate competition and maternal avoidance of incestuous matings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Two principles are important for the optimal sex ratio strategy of plants. (1) Sib mating. Because seed dispersal is restricted, sib mating may occur which selects for a female bias in the seed sex ratio. (2) Local resource competition (LRC). If a plant produces pollen its nuclear genes are dispersed in two steps: first through the pollen and then, if the pollen is successful in fertilizing an ovule on another plant, through the seed. If the plant produces an ovule, its genes are dispersed only through the seed. By making pollen instead of ovules the offspring of a single plant is then spread out over a wider area. This reduces the chance that genetically related individuals are close together and need to compete for the same resource. The effect is the strongest if pollen is dispersed over a much wider area than seeds. Less LRC for paternally vs. maternally derived offspring selects for a male bias in sex allocation. We study the above‐mentioned opposite effects in dioecious plants (with separate male and female individuals), with maternal control over the sex ratio (fraction males) in the seeds. In a two‐dimensional spatial model female‐biased sex ratios are found when both pollen and seed dispersal are severely restricted. If pollen disperses over a wider area than seeds, which is probably the common situation in plants, the seed sex ratio becomes male‐biased. If pollen and seeds are both dispersed over a wide area, the sex ratio approaches 0.5. Our results do not change if the offspring of brother–sister matings are less fit because of inbreeding depression.  相似文献   

13.
The ultimate causes for predominant male‐biased dispersal (MBD) in mammals and female‐biased dispersal (FBD) in birds are still subject to much debate. Studying exceptions to general patterns of dispersal, for example, FBD in mammals, provides a valuable opportunity to test the validity of proposed evolutionary pressures. We used long‐term behavioural and genetic data on individually banded Proboscis bats (Rhynchonycteris naso) to show that this species is one of the rare mammalian exceptions with FBD. Our results suggest that all females disperse from their natal colonies prior to first reproduction and that a substantial proportion of males are philopatric and reproduce in their natal colonies, although male immigration has also been detected. The age of females at first conception falls below the tenure of males, suggesting that females disperse to avoid father–daughter inbreeding. Male philopatry in this species is intriguing because Proboscis bats do not share the usual mammalian correlates (i.e. resource‐defence polygyny and/or kin cooperation) of male philopatry. They have a mating strategy based on female defence, where local mate competition between male kin is supposedly severe and should prevent the evolution of male philopatry. However, in contrast to immigrant males, philopatric males may profit from acquaintance with the natal foraging grounds and may be able to attain dominance easier and/or earlier in life. Our results on Proboscis bats lent additional support to the importance of inbreeding avoidance in shaping sex‐biased dispersal patterns and suggest that resource defence by males or kin cooperation cannot fully explain the evolution of male philopatry in mammals.  相似文献   

14.
Dispersal is ubiquitous throughout the tree of life: factors selecting for dispersal include kin competition, inbreeding avoidance and spatiotemporal variation in resources or habitat suitability. These factors differ in whether they promote male and female dispersal equally strongly, and often selection on dispersal of one sex depends on how much the other disperses. For example, for inbreeding avoidance it can be sufficient that one sex disperses away from the natal site. Attempts to understand sex‐specific dispersal evolution have created a rich body of theoretical literature, which we review here. We highlight an interesting gap between empirical and theoretical literature. The former associates different patterns of sex‐biased dispersal with mating systems, such as female‐biased dispersal in monogamous birds and male‐biased dispersal in polygynous mammals. The predominant explanation is traceable back to Greenwood's ( 1980 ) ideas of how successful philopatric or dispersing individuals are at gaining mates or the resources required to attract them. Theory, however, has developed surprisingly independently of these ideas: models typically track how immigration and emigration change relatedness patterns and alter competition for limiting resources. The limiting resources are often considered sexually distinct, with breeding sites and fertilizable females limiting reproductive success for females and males, respectively. We show that the link between mating system and sex‐biased dispersal is far from resolved: there are studies showing that mating systems matter, but the oft‐stated association between polygyny and male‐biased dispersal is not a straightforward theoretical expectation. Here, an important understudied factor is the extent to which movement is interpretable as an extension of mate‐searching (e.g. are matings possible en route or do they only happen after settling in new habitat – or can females perhaps move with stored sperm). We also point out other new directions for bridging the gap between empirical and theoretical studies: there is a need to build Greenwood's influential yet verbal explanation into formal models, which also includes the possibility that an individual benefits from mobility as it leads to fitness gains in more than one final breeding location (a possibility not present in models with a very rigid deme structure). The order of life‐cycle events is likewise important, as this impacts whether a departing individual leaves behind important resources for its female or male kin, or perhaps both, in the case of partially overlapping resource use.  相似文献   

15.
In polygynous, sexual dimorphic species with higher variance in male reproductive success compared with females, females are expected to invest more heavily in sons than daughters within the constraints imposed by their physical condition (Science 1973; 179:90). Mothers in good condition, usually those of high rank, should produce more sons than females in poor condition or of low rank. We investigated sex allocation and sex‐biased maternal investment in a population of wild Hanuman langurs using rank and group size as approximations of female physical condition. Our results show that reproductive costs of sons were higher with both significantly longer interbirth intervals following male births and longer lactational periods for sons. Not in all groups did analyses of rank‐dependent sex allocation reveal the expected pattern of high‐ranking mothers producing more sons. However, sex ratio was significantly influenced by group size, with females from larger groups, i.e., in worse physical condition, producing a daughter‐biased sex ratio. In fact, only females of population‐wide superior physical condition can be expected to produce sons, because in Hanuman langurs males disperse and compete population‐wide. Thus, our results support the Trivers–Willard model and may explain the mixed evidence accruing from studies of single groups. We present a graphical model of how group size and dominance‐related differences in energy gain may influence sex allocation under different competitive regimes relative to overall resource availability. Tests of adaptive sex allocation models should consider whether reproductive competition of the preferred sex takes place primarily within a group or within the population.  相似文献   

16.
Studies of sex allocation have provided some of the most successfultests of theory in behavioral and evolutionary ecology. Forinstance, local mate competition (LMC) theory has explainedvariation in sex allocation across numerous species. However,some patterns of sex ratio variation remain unexplained by existingtheory. Most existing models have ignored variation in malecompetitive ability and assumed all males have equal opportunitiesto mate within a patch. However, in some species experiencingLMC, males often fight fiercely for mates, such that male matingsuccess varies with male fighting ability. Here, we examinethe effect of competitive ability on optimal sex allocationschedules using a dynamic programming approach. This model assumesan asymmetric competitive ability derived from different mortalitiesaccording to the timing of male emergence. If the mortalityof newly emerging males is larger than that of already emergedmales, our model predicts a more female-biased sex ratio thanexpected under traditional LMC models. In addition, femalesare predicted to produce new males constantly at a low rateover the offspring emergence period. We show that our modelsuccessfully predicts the sex ratios produced by females ofthe parasitoid wasp Melittobia, a genus renowned for its vigorouslyfighting males and lower than expected sex ratios.  相似文献   

17.
Models considering sex ratio optima under single foundress strict local mate competition predict that female bias will be reduced by stochasticity in sex allocation, developmental mortality of males and limited insemination capacity of males. In all three cases the number of males per brood is expected to increase with brood size. Sex ratio optima may also be less female biased when several mothers contribute offspring to local mating groups or if non‐local mating occurs between members of different broods; again more males are expected in larger broods. In the parasitoid wasp Goniozus legneri (Hymenoptera: Bethylidae), sex allocation has only a small stochastic component, developmental mortality is low and non‐siblings are unlikely to develop in the same brood. However, the number of males per brood increases with the size of the brood (produced by a single mother). We investigated the further possibilities of limited insemination capacity and non‐local mating using a naturalistic experimental protocol. We found that limited insemination capacity is an unlikely general explanation for the increase in number of males with brood size. All males and females dispersed from both mixed and single sex broods. Although most females in mixed sex broods mated prior to dispersal, these data suggest that non‐local mating is possible, for instance via male immigration to broods containing virgin females. This may influence sex ratio optima and account for the trend in male number.  相似文献   

18.
In species that produce broods of multiple offspring, parents need to partition resources among simultaneously growing neonates that often differ in growth requirements. In birds, multiple ovarian follicles develop inside the female at the same time, resulting in a trade-off of resources among them and potentially limiting maternal ability for sex-specific allocation. We compared resource acquisition among oocytes in relation to their future sex and ovulation order in two populations of house finches with contrasting sex-biased maternal strategies. In a native Arizona population, where mothers do not bias offspring sex in relation to ovulation order, the male and female oocytes did not show sex-specific trade-offs of resources during growth and there was no evidence for spatial or temporal segregation of male and female oocytes in the ovary. In contrast, in a recently established Montana population where mothers strongly bias offspring sex in relation to ovulation order, we found evidence for both intra-sexual trade-offs among male and female oocytes and sex-specific clustering of oocytes in the ovary. We discuss the importance of sex-specific resource competition among offspring for the evolution of sex-ratio adjustment and sex-specific maternal resource allocation.  相似文献   

19.
Patterns of natal dispersal are generally sex‐biased in vertebrates, i.e. female‐biased in birds and male‐biased in mammals. Interphyletic comparisons in mammals suggest that male‐biased dispersal occurs in polygynous and promiscuous species where local mate competition among males exceeds local resource competition among females. However, few studies have analysed sex‐biased patterns of dispersal at the individual level, and facultatively polygynous species might offer this opportunity. In the spotless starling, polygynous males exhibit their mating status during courtship carrying higher amounts of green plants to nests than monogamous males. We experimentally incorporated green plants to nests during four years to analyse long‐term consequences on breeding success and offspring recruitment rates. We unexpectedly found that experimental sons recruited farther than experimental daughters, while control daughters recruited farther than control sons. A similar pattern was found using observational information from eight years. We discuss this result in the context of local competition hypothesis and speculate that sons dispersed farther from nests controlled by polygynous males to avoid competition with relatives. The amount of green plants in nests affects female perception of male attractiveness and degree of polygyny, although little is known about proximate mechanisms linking this process with the offspring dispersal behaviour. Our results support the idea that male‐biased dispersal is related to polygyny in a facultatively polygynous bird.  相似文献   

20.
Several non‐mutually exclusive hypotheses predict adaptive variation in the offspring sex ratio. When conditions for breeding are adverse, parents are predicted to produce more offspring of the less costly sex to rear (‘the cost‐of‐reproduction hypothesis’). Moreover, they also should produce the more dispersing sex in order to diminish future competition (‘the local‐resource‐competition hypothesis’). Here, we analyse brood sex ratio according to rearing conditions in the southern shrike Lanius meridionalis, a species with moderately reversed sexual dimorphism. Our results suggest that females are more costly to rear than males in this species. Adult females proved heavier than males, and female nestling tended to be heavier than male nestlings. Moreover, the greater brood reduction, the more male‐biased was the brood, suggesting that brood reduction implied higher mortality in female nestlings. Consistent with these findings, the brood sex ratio was biased to the less costly sex (males) when breeding conditions were adverse (bad years or low‐quality male parents), supporting the cost‐of‐reproduction hypothesis. By contrast, these findings did not support the local‐resource‐competition hypothesis, which predicted female‐biased brood sex ratio under adverse conditions. As a whole, our results support the idea that birds adaptively modulate sex ratio in order to minimize reproduction costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号