首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two potential single nucleotide polymorphisms [SNPs; rs1804215 (G979T) and rs11545379 (G1169T)] have been identified in the human pancreatic ribonuclease, RNase 1, gene (RNASE1) that could give rise to an amino acid substitution in the protein, but relevant population data are not available. We have developed genotyping methods for each SNP using the mismatched PCR-restriction fragment length polymorphism technique. These methods are advantageous in comparison with other SNP genotyping methods because they are technically simpler and do not require specialized instruments. We applied these genotyping methods to examine the genotype distribution of each SNP in four populations, including Japanese populations living in two prefectures, an Ovambo population, and a Turkish population. In all the populations studied, however, only a single genotype for each SNP was found. Therefore, irrespective of differences in ethnic groups, RNASE1 might show markedly low heterogeneity in its genetic structure with regard to these SNPs.  相似文献   

2.
DNA fragmentation factor beta (DFFB) polypeptide, endonuclease G (EndoG), and Flap endonuclease-1 (FEN-1) are responsible for DNA fragmentation, a hallmark of apoptosis. Although the human homologs of these genes show three, four, and six nonsynonymous single-nucleotide polymorphisms (SNPs), respectively, data on their genotype distributions in populations worldwide are limited. In this context, the objectives of this study were to elucidate the genetic heterogeneity of all these SNPs in wide-ranging populations, and thereby to clarify the genetic background of these apoptosis-related endonucleases in human populations. We investigated the genotype distribution of their SNPs in 13 different populations of healthy Asians, Africans, and Caucasians using novel genotyping methods. Among the 13 SNPs in the 3 genes, only 3 were found to be polymorphic: R196K and K277R in the DFFB gene, and S12L in the EndoG gene. All 6 SNPs in the FEN-1 gene were entirely monoallelic. Although it remains unclear whether each SNP would exert any effect on endonuclease functions, these genes appear to exhibit low degree of genetic heterogeneity with regard to nonsynonymous SNPs. These findings allow us to conclude that human apoptosis-related endonucleases, similarly to other human DNase genes, revealed previously, are well conserved at the protein level during the course of human evolution.  相似文献   

3.
Conventional marker-based genotyping platforms are widely available, but not without their limitations. In this context, we developed Sequence-Based Genotyping (SBG), a technology for simultaneous marker discovery and co-dominant scoring, using next-generation sequencing. SBG offers users several advantages including a generic sample preparation method, a highly robust genome complexity reduction strategy to facilitate de novo marker discovery across entire genomes, and a uniform bioinformatics workflow strategy to achieve genotyping goals tailored to individual species, regardless of the availability of a reference sequence. The most distinguishing features of this technology are the ability to genotype any population structure, regardless whether parental data is included, and the ability to co-dominantly score SNP markers segregating in populations. To demonstrate the capabilities of SBG, we performed marker discovery and genotyping in Arabidopsis thaliana and lettuce, two plant species of diverse genetic complexity and backgrounds. Initially we obtained 1,409 SNPs for arabidopsis, and 5,583 SNPs for lettuce. Further filtering of the SNP dataset produced over 1,000 high quality SNP markers for each species. We obtained a genotyping rate of 201.2 genotypes/SNP and 58.3 genotypes/SNP for arabidopsis (n?=?222 samples) and lettuce (n?=?87 samples), respectively. Linkage mapping using these SNPs resulted in stable map configurations. We have therefore shown that the SBG approach presented provides users with the utmost flexibility in garnering high quality markers that can be directly used for genotyping and downstream applications. Until advances and costs will allow for routine whole-genome sequencing of populations, we expect that sequence-based genotyping technologies such as SBG will be essential for genotyping of model and non-model genomes alike.  相似文献   

4.
5.
Mapping single nucleotide polymorphisms (SNPs) in genes potentially involved in immune responses may help understand the pathophysiology of infectious diseases in specific geographical regions. In this context, we have aimed to analyze the frequency of immunogenetic markers, focusing on genes CD209 (SNP -336A/G), FCγRIIa (SNP -131H/R), TNF-α (SNP -308A/G) and VDR (SNP Taq I) in two populations of the Espirito Santo State (ES), Brazil: general and Pomeranian populations. Peripheral blood genomic DNA was extracted from one hundred healthy individuals of the general population and from 59 Pomeranians. Polymorphic variant identification was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP). SNP genotype frequencies were in Hardy–Weinberg Equilibrium. There was no statistically significant difference in allelic and genotypic distributions between the two populations studied. Statistically significant differences were observed for SNP genotype distribution in genes CD209, TNF-α and VDR when comparing the ES populations with other Brazilian populations. This is the first report of CD209, FcγRIIa, TNF-α and VDR allelic frequencies for the general and Pomeranian populations of ES.  相似文献   

6.
为探讨MMP-2和TIMP-2基因启动子区单核苷酸多态性(SNPs)与卵巢上皮性癌发病风险的关系, 采用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)方法检测了246例卵巢上皮性癌患者和324例对照妇女的MMP-2 C-1306T、C-735T和TIMP-2 G-418C 3个SNPs的基因型。结果显示, MMP-2 C-1306T SNP的等位基因及基因型频率分布在卵巢癌与对照组间无显著差异(P=0.55和P=0.42); 但卵巢癌组MMP-2 C-735T SNP的C等位基因和C/C基因型频率(80.7%和66.7%)明显高于对照组(75.5%和55.9%), 与T/T+C/T基因型比较, 携带C/C基因型可以显著增加卵巢癌的发病风险(OR=1.58, 95% CI=1.12~2.23), 进一步分层分析显示, C/C基因型主要与宫内膜样癌和年龄≥50岁妇女的发病风险显著相关, OR值分别为1.69(95%CI=1.03~2.79)和1.71(95% CI=1.14~2.57); 对MMP-2 C-1306T、C-735T 2个SNPs的单体型分析显示, 4种单体型频率(T-1306-T-735、T-1306-C-735、C-1306-T-735和C-1306-C-735)在两组间分布无显著差异(P=0.24); 虽然TIMP-2 G-418C SNP的等位基因及基因型频率在卵巢癌组与对照组间分布无显著性差异(P=0.33和P=0.47), 但以病理类型分层分析显示, 携带TIMP-2 G-418G/G基因型有增加宫内膜样癌发病风险的趋势(OR=1.62, 95%CI=0.94~2.78)。以上结果提示, MMP-2基因启动子区C-735T SNP的C/C基因型可能是卵巢上皮性癌发病的潜在危险因素, 而C-1306T SNP可能与卵巢上皮性癌的发病风险无关; TIMP-2 G-418C SNP可能与不同病理类型的卵巢上皮性癌发病风险有关。  相似文献   

7.
8.
Human eye color is a polymorphic phenotype influenced by multiple genes. It has recently been reported that three single nucleotide polymorphisms (SNPs) within intron 1 of the OCA2 gene (rs7495174, rs4778241, rs4778138) and two SNPs in intron 86 (rs12913832) and the 3′ UTR region (rs1129038) of the HERC2 gene—located in the upstream of the OCA2 locus —have a high statistical association with human eye color. The present study is the first to examine in detail the genotype and haplotype frequencies for these five SNPs in an Asian (Japanese) population (n = 523) comprising solely brown‐eyed individuals. Comparison of the genotype and haplotype distributions in Japanese with those in African and European subjects revealed significant differences between Japanese and other populations. Analysis of haplotypes consisting of four SNPs at the HERC2‐OCA2 locus (rs12913832/rs7495174/rs4778241/rs4778138) showed that the most frequent haplotype in the Japanese population is A‐GAG (0.568), while the frequency of this haplotype is rather low in the European population, even in the brown‐eyed group (0.167). The haplotype distribution in the Japanese population was significantly different from that in the brown‐eyed European group (FST = 0.18915). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Genetic variants that contribute to risk of common disease may differ in frequency across populations more than random variants in the genome do, perhaps because they have been exposed to population-specific natural selection. To assess this hypothesis empirically, we analyzed data from two groups of single-nucleotide polymorphisms (SNPs) that have shown reproducible (n = 9) or reported (n = 39) associations with common diseases. We compared the frequency differentiation (between Europeans and Africans) of the disease-associated SNPs with that of random SNPs in the genome. These common-disease-associated SNPs are not significantly more differentiated across populations than random SNPs. Thus, for the data examined here, ethnicity will not be a good predictor of genotype at many common-disease-associated SNPs, just as it is rarely a good predictor of genotype at random SNPs in the genome.  相似文献   

10.
11.
水稻单核苷酸多态性及其应用现状   总被引:6,自引:0,他引:6  
刘传光  张桂权 《遗传》2006,28(6):737-744
单核苷酸多态性(single nucleotide polymorphisms, SNPs)在水稻中数量多,分布密度高,遗传稳定性高。水稻SNPs的发现方法主要有对样本DNA的PCR产物直接测序、从SSR区段检测SNPs和从基因组序列直接搜索等。目前已有多种基因分型技术运用到了水稻SNPs检测,SNPs检测的高度自动化使水稻SNPs基因分型非常方便。单核苷酸多态性在水稻遗传图谱的构建、基因克隆和功能基因组学研究、标记辅助选择育种、遗传资源分类及物种进化等方面的应用具有巨大潜力。  相似文献   

12.
OBJECTIVE: Evaluate the consistency of the contribution of interactions between single nucleotide polymorphism (SNP) genotype effects to variation in measures of lipid metabolism across ethnic strata within gender. METHODS AND RESULTS: We considered 80 SNPs within the apolipoprotein (APO) A1/C3/A4/A5 gene cluster using an over-parameterized general linear model to identify SNPs whose genotype effects combine non-additively to influence plasma levels of high density lipoprotein cholesterol (HDL-C), total cholesterol (TC) and triglycerides (TG) in a consistent manner across ethnic strata. We analyzed population-based samples of unrelated 18 to 30 year old African-Americans (n = 1,858) and European-Americans (n = 1,973) ascertained without regard to health at four field centers (Birmingham, Ala.; Chicago, Ill.; Minneapolis, Minn. and Oakland, Calif., USA) by the Coronary Artery Risk Development in Young Adults (CARDIA) study. To identify which SNP genotype effects combine non-additively we used a two-tier analysis strategy. We first required that pairs of SNPs show statistically significant non-additivity in both ethnic strata within a gender, where experiment-wise significance was evaluated using a permutation test to determine the probability of observing the number of tests significant in both ethnic strata by chance alone. Second, we required no significant evidence of heterogeneity of the relationship between the phenotype and the two SNP genotypes across ethnic strata and across field centers within each ethnic group. From this strategy we identified ten pairs of SNPs, involving thirteen SNPs, that displayed statistically significant non-additivity of SNP genotype effects on TC. Only one of these thirteen SNPs had statistically significant genotype effects that were consistent across samples. CONCLUSION: Our analyses suggest that ignoring the contribution of interactions between SNP genotype effects when modeling multi-SNP genotype-phenotype relationships may result in an underestimate of the contribution of genetic variation to variation in quantitative cardiovascular disease (CVD) risk factor traits.  相似文献   

13.
Angus and Hereford beef is marketed internationally for apparent superior meat quality attributes; DNA-based breed authenticity could be a useful instrument to ensure consumer confidence on premium meat products. The objective of this study was to develop an ultra-low-density genotype panel to accurately quantify the Angus and Hereford breed proportion in biological samples. Medium-density genotypes (13 306 single nucleotide polymorphisms (SNPs)) were available on 54 703 commercial and 4042 purebred animals. The breed proportion of the commercial animals was generated from the medium-density genotypes and this estimate was regarded as the gold-standard breed composition. Ten genotype panels (100 to 1000 SNPs) were developed from the medium-density genotypes; five methods were used to identify the most informative SNPs and these included the Delta statistic, the fixation (Fst) statistic and an index of both. Breed assignment analyses were undertaken for each breed, panel density and SNP selection method separately with a programme to infer population structure using the entire 13 306 SNP panel (representing the gold-standard measure). Breed assignment was undertaken for all commercial animals (n=54 703), animals deemed to contain some proportion of Angus based on pedigree (n=5740) and animals deemed to contain some proportion of Hereford based on pedigree (n=5187). The predicted breed proportion of all animals from the lower density panels was then compared with the gold-standard breed prediction. Panel density, SNP selection method and breed all had a significant effect on the correlation of predicted and actual breed proportion. Regardless of breed, the Index method of SNP selection numerically (but not significantly) outperformed all other selection methods in accuracy (i.e. correlation and root mean square of prediction) when panel density was ⩾300 SNPs. The correlation between actual and predicted breed proportion increased as panel density increased. Using 300 SNPs (selected using the global index method), the correlation between predicted and actual breed proportion was 0.993 and 0.995 in the Angus and Hereford validation populations, respectively. When SNP panels optimised for breed prediction in one population were used to predict the breed proportion of a separate population, the correlation between predicted and actual breed proportion was 0.034 and 0.044 weaker in the Hereford and Angus populations, respectively (using the 300 SNP panel). It is necessary to include at least 300 to 400 SNPs (per breed) on genotype panels to accurately predict breed proportion from biological samples.  相似文献   

14.
Cheng H  Ma B  Jiang R  Wang W  Guo H  Shen N  Li D  Zhao Q  Wang R  Yi P  Zhao Y  Liu Z  Huang T 《Molecular biology reports》2012,39(9):9265-9274
The tumor suppressor gene TP53 and its negative regulator murine double minute 2 are involved in multiple cellular pathways. Two potentially functional single nucleotide polymorphisms (SNPs) MDM2 SNP309 and TP53 R72P have been extensively investigated to be associated with breast cancer risk. However, the original studies as well as the subsequent meta-analysis, have yielded contradictory results for the individual effect of the two SNPs on breast cancer risk, plus that conflicting results also existed for the combined effects of MDM2 SNP309 and TP53 R72P on breast cancer risk. This meta-analysis aimed to clarify the individual and combined effects of these two genes on breast cancer risk. We performed a meta-analysis of publications with a total 9,563 cases and 9,468 controls concerning MDM2 SNP309 polymorphism and 19,748 cases and 19,962 controls concerning TP53 R72P. Odds ratios (ORs) with 95 % confidence intervals (CIs) were used to assess the strength of the association. In overall meta-analysis, individuals with the MDM2 SNP309TG genotype were associated with a borderline higher breast cancer risk than those with TT genotype (OR = 1.11, 95 % CI: 1.00-1.24, P (heterogeneity) = 0.007), whereas the TP53 R72P CC or GC genotype had no effects on breast cancer risk. In the stratified analyses, a significant association between MDM2 SNP309 and breast cancer risk were observed in Asian, but null significant association between TP53 R72P and breast cancer risk were found even in various subgroups. Moreover, no significant combined effects of MDM2 SNP309 and TP53 R72P were observed on breast cancer risk. The borderline association between MDM2 SNP309 and breast cancer risk in overall analysis should be treated with caution, and no significant combined effects for the two SNPs on breast cancer risk suggested functional investigations warranted to explore the molecular mechanism of the TP53-MDM2 circuit genes.  相似文献   

15.
A 3.3-kb region, encompassing the APOA2 gene and 2 kb of 5' and 3' flanking DNA, was re-sequenced in a "core" sample of 24 individuals, sampled without regard to the health from each of three populations: African-Americans from Jackson (Miss., USA), Europeans from North Karelia (Finland), and non-Hispanic European-Americans from Rochester, (Minn., USA). Fifteen variable sites were identified (14 SNPs and one multi-allelic microsatellite, all silent), and these sites segregated as 18 sequence haplotypes (or nine, if SNPs only are considered). The haplotype distribution in the core African-American sample was unusual, with a deficit of particular haplotypes compared with those found in the other two samples, and a significantly (P<0.05) low level of nucleotide diversity relative to patterns of polymorphism and divergence at other human loci. Six of the 14 SNPs, whose variation captured the haplotype structure of the core data, were then genotyped by oligonucleotide ligation assay in an additional 2183 individuals from the same three populations (n=843, n=452, and n=888, respectively). All six sites varied in each of the larger "epidemiological" samples, and together, they defined 19 SNP haplotypes, seven with relative frequencies greater than 1% in the total sample; all of these common haplotypes had been identified earlier in the core re-sequencing survey. Here also, the African-American sample showed significantly lower SNP heterozygosity and haplotype diversity than the other two samples. The deficit of polymorphism is consistent with a population-specific non-neutral increase in the relative frequency of several haplotypes in Jackson.  相似文献   

16.
Tarlinton  R. E.  Fabijan  J.  Hemmatzadeh  F.  Meers  J.  Owen  H.  Sarker  N.  Seddon  J. M.  Simmons  G.  Speight  N.  Trott  D. J.  Woolford  L.  Emes  R. D. 《Conservation Genetics》2021,22(3):329-340

Historical hunting pressures on koalas in the southern part of their range in Australia have led to a marked genetic bottleneck when compared with their northern counterparts. There are a range of suspected genetic disorders such as testicular abnormalities, oxalate nephrosis and microcephaly reported at higher prevalence in these genetically restricted southern animals. This paper reports analysis of differential expression of genes from RNAseq of lymph nodes, SNPs present in genes and the fixation index (population differentiation due to genetic structure) of these SNPs from two populations, one in south east Queensland, representative of the northern genotype and one in the Mount Lofty Ranges South Australia, representative of the southern genotype. SNPs that differ between these two populations were significantly enriched in genes associated with brain diseases. Genes which were differentially expressed between the two populations included many associated with brain development or disease, and in addition a number associated with testicular development, including the androgen receptor. Finally, one of the 8 genes both differentially expressed and with a statistical difference in SNP frequency between populations was SLC26A6 (solute carrier family 26 member 6), an anion transporter that was upregulated in SA koalas and is associated with oxalate transport and calcium oxalate uroliths in humans. Together the differences in SNPs and gene expression described in this paper suggest an underlying genetic basis for several disorders commonly seen in southern Australian koalas, supporting the need for further research into the genetic basis of these conditions, and highlighting that genetic selection in managed populations may need to be considered in the future.

  相似文献   

17.
Many association studies analyze the genotype frequencies of case and control data to predict susceptibility to diseases and cancers. Without providing the raw data for genotypes, many association studies cannot be interpreted fully. Often, the interactions of the single nucleotide polymorphisms (SNPs) are not addressed and this limits the potential of such studies. To solve these problems, we propose a novel computational method with source codes to generate a stimulated genotype dataset based on published SNP genotype frequencies. In this study we evaluate the combined effect of 26 SNP combinations related to eight published growth factor-related genes involved in carcinogenesis pathways of breast cancer. The genetic algorithm (GA) was chosen to provide simultaneous analysis of multiple independent SNPs. The GA can perform feature selection from different SNP combinations via their corresponding genotype (called the SNP barcode), and the approach is able to provide a specific SNP barcode with an optimized fitness value effectively. The best SNP barcode with the maximal occurrence difference between groups for the control and breast cancer, together with an odds ratio analysis, is used to evaluate breast cancer susceptibility. When they are compared to their corresponding non-SNP barcodes, the estimated odds ratios for breast cancer are less than 1 (about 0.85 and 0.87; confidence interval: 0.7473~0.9585, p?相似文献   

18.
Admixed populations have not been examined in detail in cancer genetic studies. Here, we inferred the local ancestry of cancer-associated single nucleotide polymorphisms (SNPs) and haplotypes of a highly admixed Brazilian population. SNP array was used to genotype 73 unrelated individuals aged 80-102 years. Local ancestry inference was performed by merging genotyped regions with phase three data from the 1000 Genomes Project Consortium using RFmix. The average ancestry tract length was 9.12-81.71 megabases. Strong linkage disequilibrium was detected in 48 haplotypes containing 35 SNPs in 10 cancer driver genes. All together, 19 risk and eight protective alleles were identified in 23 out of 48 haplotypes. Homozygous individuals were mainly of European ancestry, whereas heterozygotes had at least one Native American and one African ancestry tract. Native-American ancestry for homozygous individuals with risk alleles for HNF1B, CDH1, and BRCA1 was inferred for the first time. Results indicated that analysis of SNP polymorphism in the present admixed population has a high potential to identify new ancestry-associated alleles and haplotypes that modify cancer susceptibility differentially in distinct human populations. Future case-control studies with populations with a complex history of admixture could help elucidate ancestry-associated biological differences in cancer incidence and therapeutic outcomes.  相似文献   

19.
欧洲黑杨基因资源材性关联基因的SNP分析   总被引:9,自引:0,他引:9  
丁明明  黄秦军  苏晓华 《遗传》2008,30(6):795-800
以115个欧洲黑杨(Populus nigra L.)无性系为材料, 利用TaqMan技术分析了欧洲黑杨基因资源参与木质素和纤维素合成的酶(4CL、PAL和CesA2)的单核苷酸多态性, 并对分型的SNPs与木材材性性状(物理性状:基本密度、纤维长、纤维宽、微纤丝角; 化学性状: 木质素含量、纤维素含量、a 纤维素含量等)进行了相关分析。结果如下: (1)在对4CL、PAL和CesA2等3个基因进行检测时, 共获得27个SNPs标记, 对其中转换(A-G, C-T)有17个位点, 颠换(A-C, G-C, G-T, A-T等)有10个位点; (2)对其中的3个SNPs进行了分型, 分别记作SNP1、SNP2和SNP3; (2)对已经分型SNPs位点与材性性状进行方差分析, 结果显示, 3个SNPs中只有SNP1与4年生欧洲黑杨综纤维素含量显著相关, 表现为负效应, 贡献率为11.11%; (3)对欧洲黑杨4CL基因的SNP1标记的不同基因型所对应的材性性状进行方差分析, 结果显示基因型为CC和CT的欧洲黑杨相对于基因型为TT的欧洲黑杨有较高的纤维素含量。  相似文献   

20.
The Parkinson disease (PD) is the second most common progressive neurodegenerative disorder that arises due to degeneration of dopaminergic neurons. The causes of this disease are still unknown, but a number of genes involved in pathogenesis of familial and sporadic forms of PD has been identified. According to recent data of genome wide association studies (GWAS), single nucleotide polymorphisms (SNPs) in these genes (including MAPT locus) may play an important role in the development of PD. Therefore, we analyzed distribution of genotype frequencies of SNP rs415430 in the WNT3 gene in the Russian patients with sporadic PD and in the Russian population controls (OR = 0.84, Confidence Interval (95% CI) 0.58-1.23, p = 0.39). It was concluded that SNP rs415430 in the WNT3 gene was not associated with the risk of development of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号