首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence alignment of human T-lymphotropic virus type I (HTLV-I) protease and other retroviral proteases reveals that the leukemia virus proteases contain residues at the C-terminus that are absent in the other proteases. We have prepared a mutant of HTLV-I protease that does not contain the 10 C-terminal residues and demonstrated that the catalytic efficiency of cleavage of a peptide substrate is unaffected.  相似文献   

2.
Biochemical studies indicate that dimerization is required for the catalytic activity of herpesvirus proteases, whereas structural studies show a complete active site in each monomer, away from the dimer interface. Here we report kinetic, biophysical and crystallographic characterizations of structure-based mutants in the dimer interface of human cytomegalovirus (HCMV) protease. Such mutations can produce a 1,700-fold reduction in the kcat while having minimal effects on the K(m). Dimer stability is not affected by these mutations, suggesting that dimerization itself is insufficient for activity. There are large changes in monomer conformation and dimer organization of the apo S225Y mutant enzyme. However, binding of an activated peptidomimetic inhibitor induced a conformation remarkably similar to the wild type protease. Our studies suggest that appropriate dimer formation may be required to indirectly stabilize the protease oxyanion hole, revealing a novel mechanism for dimerization to regulate enzyme activity.  相似文献   

3.
4.
Mutant herpes simplex virus type 1 (HSV-1) viruses were constructed to characterize the roles of the conserved histidine residues (H61 and H148) of HSV-1 protease in the regulation of catalytic activity and virus maturation. Viruses containing mutations at H61 (H61V-V711, H61Y-V715, and H61A-V730) were unable to grow on Vero cells. These mutant viruses could process neither Pra to N0 nor ICP-35cd to ICP-35ef. Transmission electron microscopy studies of H61A-V730-infected Vero cells indicated that capsid maturation is arrested at a state characterized by the predominance of large symmetrical arrays of B capsids within the nucleus. Two mutations at H148 (in viruses H148A-V712 and H148E-V728) gave rise to mutant viruses that grew with a small-plaque phenotype; one of the viruses, H148E-V728, was particularly attenuated when grown at a low multiplicity of infection. The rate of processing of Pra to N0 in infected Vero cells increased in the order H148A-V712 < H148E-V728 < parental strain HSV-1-V731. The observation that H148A-V712 processes Pra to N0 and ICP-35cd to ICP-35ef, whereas H61A does not, establishes H61 as the catalytically essential conserved His assuming that HSV-1 protease, like other serine proteases, utilizes an active-site histidine residue in catalysis. Two of the mutations at H148 (viruses H148K-V729 and H148Y-V716) produced nonviable viruses. H148K-V729 processed neither Pra to N0 nor ICP-35cd to ICP-35ef, whereas H148Y-V716 processed Pra to N0 but did not process ICP-35cd to ICP-35ef. The range of phenotypes observed with the H148 mutant viruses suggests that residue 148 of the HSV-1 protease is a determinant of virus growth rate and viability because of its effects on the activity of the protease and/or the role of the protease domain in capsid assembly and DNA packaging.  相似文献   

5.
The requirement of N- and C-terminal regions for the enzymatic activity of human T-cell leukemia virus type I (HTLV-I) protease was investigated using a series of deletion mutants. The activity was analyzed by autoprocessing of the protease itself or by processing of the gag p53 precursor. The deletional analyses indicated that Asp38-Gly152 with an additional Met-Pro sequence at the N-terminus was probably sufficient for the enzymatic activity, although the mature HTLV-I protease consists of Pro33-Leu157. A molecular model of HTLV-I protease, which was constructed by comparison with the structure of Rous sarcoma virus protease, predicted that Pro33-Leu37 and Gly143-Leu147 would form a beta-sheet. Our experimental results and the model structure suggest that (a) five amino acids in the N-terminal region (Pro33-Leu37), which are thought to be involved in the beta-sheet, are not crucial for the enzymatic activity; (b) Pro153-Leu157 is not necessary but Pro148-Gly152 is important for the enzymatic activity, in addition to Gly143-Leu147 involved in the beta-sheet.  相似文献   

6.
CtpA, a carboxyl-terminal processing protease, is a member of a novel family of endoproteases that includes a tail-specific protease from Escherichia coli. In oxygenic photosynthetic organisms, CtpA catalyzes C-terminal processing of the D1 protein of photosystem II, an essential event for the assembly of a manganese cluster and consequent light-mediated water oxidation. We introduced site-specific mutations at 14 conserved residues of CtpA in the cyanobacterium Synechocystis sp. PCC 6803 to examine their functional roles. Analysis of the photoautotrophic growth capabilities of these mutants, their ability to process precursor D1 protein and hence evolve oxygen, along with an estimation of the protease content in the mutants revealed that five of these residues are critical for in vivo activity of CtpA. Recent x-ray crystal structure analysis of CtpA from the eukaryotic alga Scenedesmus obliquus (Liao, D.-I., Qian, J., Chisholm, D. A., Jordan, D. B. and Diner, B. A. (2000) Nat. Struct. Biol. 7, 749-753) has shown that the residues equivalent to Ser-313 and Lys-338, two of the five residues mentioned above, form the catalytic center of this enzyme. Our in vivo analysis demonstrates that the three other residues, Asp-253, Arg-255, and Glu-316, are also important determinants of the catalytic activity of CtpA.  相似文献   

7.
Proteolytic processing of the dengue virus polyprotein is mediated by host cell proteases and the virus-encoded NS2B-NS3 two-component protease. The NS3 protease represents an attractive target for the development of antiviral inhibitors. The three-dimensional structure of the NS3 protease domain has been determined, but the structural determinants necessary for activation of the enzyme by the NS2B cofactor have been characterized only to a limited extent. To test a possible functional role of the recently proposed Phix(3)Phi motif in NS3 protease activation, we targeted six residues within the NS2B cofactor by site-specific mutagenesis. Residues Trp62, Ser71, Leu75, Ile77, Thr78, and Ile79 in NS2B were replaced with alanine, and in addition, an L75A/I79A double mutant was generated. The effects of these mutations on the activity of the NS2B(H)-NS3pro protease were analyzed in vitro by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of autoproteolytic cleavage at the NS2B/NS3 site and by assay of the enzyme with the fluorogenic peptide substrate GRR-AMC. Compared to the wild type, the L75A, I77A, and I79A mutants demonstrated inefficient autoproteolysis, whereas in the W62A and the L75A/I79A mutants self-cleavage appeared to be almost completely abolished. With exception of the S71A mutant, which had a k(cat)/K(m) value for the GRR-AMC peptide similar to that of the wild type, all other mutants exhibited drastically reduced k(cat) values. These results indicate a pivotal function of conserved residues Trp62, Leu75, and Ile79 in the NS2B cofactor in the structural activation of the dengue virus NS3 serine protease.  相似文献   

8.
The human inducible heat shock protein 70 (hHsp70), which is involved in several major pathologies, including neurodegenerative disorders and cancer, is a key molecular chaperone and contributes to the proper protein folding and maintenance of a large number of protein structures. Despite its role in disease, the current structural knowledge of hHsp70 is almost exclusively based on its Escherichia coli homolog, DnaK, even though these two proteins only share ~50 % amino acid identity. For the first time, we describe a complete heterologous production and purification strategy that allowed us to obtain a large amount of soluble, full-length, and non-tagged hHsp70. The protein displayed both an ATPase and a refolding activity when combined to the human Hsp40. Multi-angle light scattering and bio-layer interferometry analyses demonstrated the ability of hHsp70 to homodimerize. The role of the C-terminal part of hHsp70 was identified and confirmed by a study of a truncated version of hHsp70 that could neither dimerize nor present refolding activity.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-014-0526-3) contains supplementary material, which is available to authorized users.  相似文献   

9.
A computer search revealed 10 proteins with homology to the sequence we originally identified in vimentin as the site of cleavage by human immunodeficiency virus type 1 (HIV-1) protease. Of these 10 proteins (actin, alpha-actinin, spectrin, tropomyosins, vinculin, dystrophin, MAP-2, villin, TRK-1 and Ig mu-chain), we show that 4 of the first 5 were cleaved in vitro by this protease, as are MAP-1 and -2 [(1990) J. Gen. Virol. 71, 1985-1991]. In these proteins, cleavage is not restricted to a single motif, but occurs at many sites. However, cleavage is not random, since 9 other proteins including the cytoskeletal proteins filamin and band 4.1 are not cleaved in the in vitro assay. Thus, the ability of HIV-1 protease to cleave specific components of the cytoskeleton may be an important, although as yet unevaluated aspect of the life cycle of this retrovirus and/or may directly contribute to the pathogenesis observed during infection.  相似文献   

10.
Chien CH  Tsai CH  Lin CH  Chou CY  Chen X 《Biochemistry》2006,45(23):7006-7012
The prolyl dipeptidase DPP-IV plays diverse and important roles in cellular functions. It is a membrane-bound exoprotease involved in the proteolytic cleavage of several insulin-sensing hormones. The inhibition of its enzymatic activity has been proven effective in the treatment of type II diabetes. Homodimeric DPP-IV interacts extracellularly with adenosine deaminase, and this interaction is critical for adenosine signaling and T-cell proliferation. In this study, we investigated the contribution of hydrophobic interactions to the dimerization of DPP-IV. Hydrophobic residues F713, W734, and Y735 were found to be essential for DPP-IV dimerization. Moreover, the enzymatic activity of DPP-IV was correlated with its quaternary structure. Monomeric DPP-IV had only residual activity left, ranging from 1/30 to 1/1600 of the dimeric forms. Using a surface plasmon resonance technique, we demonstrated that the affinity of these DPP-IV monomers for adenosine deaminase was not significantly altered, compared to that of dimeric DPP-IV. The study not only identifies the hydrophobic interactions critical for DPP-IV dimer formation, but also reveals no global conformational change upon the formation of monomers as determined by the protein-protein interaction (Kd) of DPP-IV with adenosine deaminase.  相似文献   

11.
Gene product W (gpW), the head-tail joining protein from bacteriophage lambda, provides a fascinating model for studying protein interactions. Composed of only 68 residues, it must interact with at least two other proteins in the phage, and probably with DNA. To study the structural and functional properties of gpW, plasmids were constructed expressing gpW with hexahistidine tag sequences at either the N or C terminus. The purified wild type fusion proteins were found to be stably folded and biologically active. The protein is monomeric as judged by equilibrium ultracentrifugation, and appears to unfold by a cooperative two-state mechanism. Circular dichroism studies indicate that the protein is 47% helical, with a T(m) of 71.3 degrees C, and a DeltaG(u) of 3.01 kcal/mol at 25 degrees C. Mutagenesis of the three hydrophobic C-terminal residues of gpW showed that they are critical for activity, even though they do not contribute to the thermodynamic stability of the protein. Using secondary structure prediction as a guide, we also designed destabilized gpW mutants. The hydrophobic nature of the gpW C terminus caused these mutants to be degraded by the ClpP-containing proteases in Escherichia coli.  相似文献   

12.
Generation of RNA dimeric form of the human immunodeficiency virus type 1 (HIV-1) genome is crucial for viral replication. The dimerization initiation site (DIS) has been identified as a primary sequence that can form a stem-loop structure with a self-complementary sequence in the loop and a bulge in the stem. It has been reported that HIV-1 RNA fragments containing the DIS form two types of dimers, loose dimers and tight dimers. The loose dimers are spontaneously generated at the physiological temperature and converted into tight dimers by the addition of nucleocapsid protein NCp7. To know the biochemical process in this two-step dimerization reaction, we chemically synthesized a 39-mer RNA covering the entire DIS sequence and also a 23-mer RNA covering the self-complementary loop and its flanking stem within the DIS. Electrophoretic dimerization assays demonstrated that the 39-mer RNA reproduced the two-step dimerization process, whereas the 23-mer RNA immediately formed the tight dimer. Furthermore, deletion of the bulge from the 39-mer RNA prevented the NCp7-assisted tight-dimer formation. Therefore, the whole DIS sequence is necessary and sufficient for the two-step dimerization. Our data suggested that the bulge region regulates the stability of the stem and guides the DIS to the two-step dimerization process.  相似文献   

13.
Human T-lymphotropic virus type 1 (HTLV-1), the etiologic agent of adult T-cell leukemia/lymphoma, is transmitted through breast milk and seminal fluid, which are rich in prostaglandins (PGs). We demonstrate that PGE(2) upregulates the HTLV-1 long terminal repeat promoter through the protein kinase A pathway, induces replication of HTLV-1 in peripheral blood mononuclear cells (PBMC) derived from asymptomatic carriers, and enhances transmission of HTLV-1 to cord blood mononuclear cells (CBMC). Furthermore, HTLV-1 Tax transactivates a promoter for cyclooxygenase 2, a PG synthetase, and induces PGE(2) expression in PBMC or CBMC. Thus, HTLV-1 interacts with and benefits from PGs, constituents of its own vehicle for transmission.  相似文献   

14.
We and others have presented evidence for a direct interaction between the matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein and the cytoplasmic tail of the transmembrane envelope (Env) glycoprotein gp41. In addition, it has been postulated that the MA domain of Gag undergoes a conformational change following Gag processing, and the cytoplasmic tail of gp41 has been shown to modulate Env-mediated membrane fusion activity. Together, these results raise the possibility that the interaction between the gp41 cytoplasmic tail and MA is regulated by protease (PR)-mediated Gag processing, perhaps affecting Env function. To examine whether Gag processing affects Env-mediated fusion, we compared the ability of wild-type (WT) HIV-1 Env and a mutant lacking the gp41 cytoplasmic tail to induce fusion in the context of an active (PR(+)) or inactive (PR(-)) viral PR. We observed that PR(-) virions bearing WT Env displayed defects in cell-cell fusion. Impaired fusion did not appear to be due to differences in the levels of virion-associated Env, in CD4-dependent binding to target cells, or in the formation of the CD4-induced gp41 six-helix bundle. Interestingly, truncation of the gp41 cytoplasmic tail reversed the fusion defect. These results suggest that interactions between unprocessed Gag and the gp41 cytoplasmic tail suppress fusion.  相似文献   

15.
Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL), a malignancy of CD4(+) T cells whose etiology is thought to be associated with the viral trans-activator Tax. We have shown recently that Tax can drastically upregulate the expression of p27(Kip1) and p21(CIP1/WAF1) through protein stabilization and mRNA trans-activation and stabilization, respectively. The Tax-induced surge in p21(CIP1/WAF1) and p27(Kip1) begins in S phase and results in cellular senescence. Importantly, HeLa and SupT1 T cells infected by HTLV-1 also arrest in senescence, thus challenging the notion that HTLV-1 infection causes cell proliferation. Here we use time-lapse microscopy to investigate the effect of Tax on cell cycle progression in two reporter cell lines, HeLa/18x21-EGFP and HeLa-FUCCI, that express enhanced green fluorescent protein (EGFP) under the control of 18 copies of the Tax-responsive 21-bp repeat element and fluorescent ubiquitin cell cycle indicators, respectively. Tax-expressing HeLa cells exhibit elongated or stalled cell cycle phases. Many of them bypass mitosis and become single senescent cells as evidenced by the expression of senescence-associated β-galactosidase. Such cells have twice the normal equivalent of cellular contents and hence are enlarged, with exaggerated nuclei. Interestingly, nocodazole treatment revealed a small variant population of HeLa/18x21-EGFP cells that could progress into mitosis normally with high levels of Tax expression, suggesting that genetic or epigenetic changes that prevent Tax-induced senescence can occur spontaneously at a detectable frequency.  相似文献   

16.
To investigate the possible involvement of a Cys thiol in the catalysis of the human glutathione transferase M1a-1a, we constructed mutants of this enzyme wherein the four Cys residues present in the native enzyme were replaced by Ala residues. Three mutants, one where all four Cys residues had been replaced and two mutants where three out of four Cys residues were changed into Ala, were characterized regarding their catalytic activities with three different substrates as well as by their binding of three different inhibitors. All three Cys-deficient mutant forms of glutathione transferase M1a-1a were catalytically active with the tested substrates and their binding of inhibitors, measured by I50, were not significantly different from the values previously obtained for the wild-type enzyme. We therefore conclude that none of the Cys residues in this class Mu glutathione transferase are directly involved in the catalysis performed by this enzyme.  相似文献   

17.
We have probed the structural organization of the human immunodeficiency virus type 1 integrase protein by limited proteolysis and the functional organization by site-directed mutagenesis of selected amino acid residues. A central region of the protein was relatively resistant to proteolysis. Proteins with altered amino acids in this region, or in the N-terminal part of the protein that includes a putative zinc-binding motif, were purified and assayed for 3' processing, DNA strand transfer, and disintegration activities in vitro. In general, these mutations had parallel effects on 3' processing and DNA strand transfer, suggesting that integrase may utilize a single active site for both reactions. The only proteins that were completely inactive in all three assays contained mutations at conserved amino acids in the central region, suggesting that this part of the protein may be involved in catalysis. In contrast, none of the mutations in the N-terminal region resulted in a protein that was inactive in all three assays, suggesting that this part of integrase may not be essential for catalysis. The disintegration reaction was particularly insensitive to these amino acid substitutions, indicating that some function that is important for 3' processing and DNA strand transfer may be dispensable for disintegration.  相似文献   

18.
Sera obtained from 3,472 persons in Malaysia, Thailand, Philippines and Indonesia were tested for the presence of antibody to adult T-cell leukemia-associated antigen by the gelatin particle agglutination test and indirect immunofluorescence. Among these, only two seropositives were identified. One was a 30-year-old male Malaysian of Indian origin. The other was a 42-year-old female Thai who resided in Bangkok. These results suggested that the infection of human T-lymphotropic virus type 1 might not be endemic in these countries.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号