首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:利用BaculoDirect杆状病毒表达系统融合表达人OPG功能片段p22-194和分枝杆菌HSP70 p111-125基因,并鉴定重组蛋白及其生物学活性。方法:将编码人OPG功能片段和分枝杆菌HSP70功能片段基因克隆至杆状病毒转座载体,将重组转座载体与BaculoDirectTM Linear DNA进行LR重组连接反应,构建出重组杆状病毒DNA,转染Sf9昆虫细胞,获得重组病毒。在Sf9细胞中进行表达,并对表达产物进行SDS-PAGE电泳、Western blotting分析,用Ni柱纯化。采用破骨细胞生成抑制试验和抑炎试验鉴定表达产物的生物学活性。结果:重组病毒在感染昆虫细胞后48h开始出现一相对分子质量为28 kDa大小的特异条带,感染后72~96 h蛋白量达到高峰。破骨细胞生成抑制实验及抑炎试验结果显示,重组蛋白能明显抑制破骨细胞的生长和分化,同时亦具有抑制炎症反应的作用。结论:利用杆状病毒表达系统在昆虫细胞中成功表达OPG-HSP70融合蛋白,该融合蛋白具有抑制破骨细胞生成和抑制炎症反应生物学活性。  相似文献   

2.
The human UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 2 (GalNAc-T2) is one of the key enzymes that initiate synthesis of hinge-region O-linked glycans of human immunoglobulin A1 (IgA1). We designed secreted soluble form of human GalNAc-T2 as a fusion protein containing mouse immunoglobulin light chain kappa secretory signal and expressed it using baculovirus and mammalian expression vectors. The recombinant protein was secreted by insect cells Sf9 and human HEK 293T cells in the culture medium. The protein was purified from the media using affinity Ni-NTA chromatography followed by stabilization of purified protein in 50mM Tris-HCl buffer at pH 7.4. Although the purity of recombinant GalNAc-T2 was comparable in both expression systems, the yield was higher in Sf9 insect expression system (2.5mg of GalNAc-T2 protein per 1L culture medium). The purified soluble recombinant GalNAc-T2 had an estimated molecular mass of 65.8kDa and its amino-acid sequence was confirmed by mass-spectrometric analysis. The enzymatic activity of Sf9-produced recombinant GalNAc-T2 was determined by the quantification of enzyme-mediated attachment of GalNAc to synthetic IgA1 hinge-region peptide as the acceptor and UDP-GalNAc as the donor. In conclusion, murine immunoglobulin kappa secretory signal was used for production of secreted enzymatically active GalNAc-T2 in insect baculovirus expression system.  相似文献   

3.
旨在利用杆状病毒系统表达、制备人视黄醇结合蛋白(RBP4)并检测其免疫原性。将人RBP4基因片段及信号肽SS64片段亚克隆到杆状病毒转移载体pFastBac-dual(pFBd)中,获得相应的重组转移质粒;转化大肠杆菌菌株DH10bac,转座后经筛选获得重组穿梭质粒rbacmid,将重组穿梭质粒转染孔板培养的Sf9细胞,获得含人RBP4表达框的重组杆状病毒,经过扩增获得毒种。毒种感染对数生长期的Sf9细胞并表达人RBP4蛋白(I-RBP4),通过SDS-PAGE和Western blotting对表达蛋白进行检测和鉴定。用毒种感染悬浮培养的Sf9细胞制备一批RBP4蛋白,完成SDS、Western blotting的检测及少量的多抗制备。纯化重组蛋白并与E.coli重组人RBP4(E-RBP4)分别免疫家兔。实验结果,酶切鉴定及测序证实重组转移质粒构建正确;成功构建重组RBP4-bacmid;人RBP4蛋白在昆虫细胞获得高效表达。表达的RBP4蛋白可以分泌到培养基中,分子量约为23 kDa,经过计算表达量为100 mg/L;纯化蛋白免疫兔子制备了多抗血清,血清滴度为1∶100 000,高于原核表达的抗体滴度(1∶10 000),与人体提纯蛋白制备的抗体滴度相近。杆状病毒系统高效表达了人的RBP4蛋白,具有较好的抗原性,并获得高亲和力的抗血清,为下一步的人血RBP4检测试剂盒的制备打下了坚实的基础。  相似文献   

4.
本文在大肠杆菌中表达了与GST融合无跨膜区的丙型肝炎病毒(Hepatitis C Virus,HCV)E1蛋白,并通过免疫兔制备了兔抗E1的抗血清。然后利用Bac-to-Bac杆状病毒表达系统构建了含有HCV结构蛋白E1基因的重组杆状病毒vAcHCVE1。通过Western blot分析,E1蛋白在Sf9细胞中表达分子量大小为30kDa大于预测的20kDa,表明存在翻译后修饰如糖基化等。通过Confocal显微镜观察当感染48h后E1蛋白定位在细胞质和细胞膜上。  相似文献   

5.
【目的】p48(ac103)基因在昆虫杆状病毒中高度保守,暗示其具有重要的生物学功能。为了研究该基因的功能,我们首先对该基因的表达特征进行描述。【方法】以杆状病毒代表种——苜蓿银纹夜蛾核型多角体病毒(Autographa californica multiple nucleopolyhedrovirus,AcMNPV)的p48基因为研究对象,利用Bac-to-Bac杆状病毒表达载体系统分别构建了在P48蛋白N-端和C-端融合HA-标签,并且携带绿色荧光蛋白基因和多角体蛋白基因的重组Bacmid。将重组Bacmid转染Sf9细胞,收集含病毒的上清去感染Sf9细胞,在感染后不同时间点收集细胞进行SDS-PAGE电泳,利用商业化的HA抗体进行Western blot分析以检测融合蛋白在昆虫细胞中的表达情况。【结果】用C-端融合HA-标签的重组病毒感染细胞后12h即可检测到一条43kDa左右、能与HA抗体发生特异性结合的蛋白条带,该特异性蛋白的表达一直持续到病毒感染后96h。从感染后48h起一直到96h,均能检测到另外一条约26kDa的蛋白条带也能与HA抗体发生特异性结合。在N-端融合HA-标签的重组病毒感染的细胞中没有检测到与HA抗体特异结合的蛋白。【结论】结果表明,p48基因是个晚期基因,在病毒感染的晚期表达,并且该蛋白在昆虫细胞中表达时N-端可能被剪切。  相似文献   

6.
【目的】利用昆虫细胞Bac-to-Bac杆状病毒表达系统表达血小板源性生长因子受体β (PDGFRβ)链膜外区与人IgG Fc片段的可溶性受体融合蛋白sPDGFRβ/Fc,并检测重组蛋白的特异性和生物活性。【方法】采用Bac-to-Bac系统,构建重组转移质粒pFastbac-sPDGFRβ/Fc,转化到含穿梭载体Bacmid的感受态细胞DH10Bac中,使目的基因与杆状病毒基因组DNA发生位点特异性重组,获得重组病毒DNA,将其通过脂质体转染昆虫细胞Sf9获得重组病毒。将该重组病毒感染Sf9无血清细胞系,在Sf9细胞中表达sPDGFRβ/Fc,对表达产物进行Western blotting检测和Protein A亲合层析纯化,并进一步通过MTT法检测获得的重组蛋白生物学活性。【结果】重组病毒感染Sf9细胞后,经Western blotting分析,能检测到一条分子量约为97 kDa的特异性条带,与目的蛋白大小相符。通过Protein A亲和层析,获得了纯度达75%以上,表达量为1 μg/mL细胞培养上清的重组融合蛋白,MTT结果显示该重组融合蛋白sPDGFRβ/Fc具有抑制PDGF刺激的Balb/c 3T3细胞增殖的能力。【结论】具有生物活性的重组可溶性受体融合蛋白sPDGFRβ/Fc可在昆虫细胞中成功地得到表达。  相似文献   

7.
We report DNA construction, baculovirus expression, and partial characterization of a minienzyme form of the human matrix metalloproteinase-9 (MMP-9). The MMP-9 minienzyme gene construct consisting of the pre, pro, and catalytic domains of the MMP-9 was introduced into Sf9 insect cells using a baculovirus expression system. The expression of the recombinant MMP-9 minienzyme was estimated to be approximately 0.8 mg/L of cell medium. The recombinant protein was purified using a single-step gelatin-Sepharose affinity column and yielded a highly stable and active minienzyme with gelatinolytic activity. Moreover, two interesting findings related to MMP-9 interactions with heparin and TIMP-1 resulted from our studies. First, the pro and catalytic domains of the human MMP-9 are not sufficient for heparin affinity. Second, in contrast to the prevailing consensus, TIMP-1 blockade of the enzymatic activity of MMP-9 does not require prior binding to the C-terminus of its MMP-9 protein substrate.  相似文献   

8.
Abstract

Human CD23 (low affinity receptor for IgE) has been expressed in insect cells (Sf9) using the baculovirus expression system and the baculovirus transfer vector pAc373. Insect cells infected with a recombinant baculovirus coding for CD23 synthesized a polypeptide not found in wild-type infected insect cells that had antigenic properties similar to natural CD23 produced in RPMI 8866 cells. Surface expression of recombinant CD23 was demonstrated by its ability to bind IgE. Recombinant CD23 expressed in insect cells had a slightly lower molecular weight (4 3 kDa) than that of natural CD23 (4 5 kDa) from RPMI 8866 cells as detected by SDS-PAGE followed by Western-blotting. Affinity-purified recombinant CD23 from in-fected insect cells showed B-cell growth promoting activity. These observations demonstrate for the first time that biologically active recombinant CD23 can be produced by the baculovirus expression system, thus providing a useful source of recombinant material to elucidate the biological functions of CD23.  相似文献   

9.
Recombinant human transferrin receptor has been produced in a baculovirus expression system. Magnetic particles coated with an anti-transferrin receptor monoclonal antibody were used to immunoselect virus-infected Sf9 insect cells expressing the human transferrin receptor on their cell surface. Recombinant virus containing the human transferrin receptor cDNA was then plaque-purified from these cells. Biosynthetic labeling studies of infected cells showed that the human transferrin receptor is one of the major proteins made 2-3 days postinfection. The recombinant receptor made in insect cells is glycosylated and is also posttranslationally modified by the addition of a fatty acid moiety. However, studies with tunicamycin and endoglycosidases H and F showed that the oligosaccharides displayed on the recombinant receptor differ from those found on the naturally occurring receptor in human cells. As a consequence, the human receptor produced in the baculovirus system has an Mr of 82,000 and is smaller in size than the authentic receptor. About 30% of human transferrin receptors made in insect cells do not form intermolecular disulfide bonds, but are recognized by the anti-transferrin receptor antibody, B3/25, and bind specifically to a human transferrin-Sepharose column. Binding studies using 125I-labeled human transferrin showed that insect cells infected with the recombinant virus expressed an average of 5.8 +/- 0.9 X 10(5) transferrin receptors (Kd = 63 +/- 9 nM) on their cell surface. Thus, the human transferrin receptor produced in insect cells is biologically active and appears suitable for structural and functional studies.  相似文献   

10.
The production of estrogen receptors (ER) in cultured insect cells is advantageous because these cells are relatively easy to culture and they perform post-translation modifications necessary for protein stability and function. There are three options for protein expression in insect cells: transient transfection, lytic baculovirus infection, or transfection followed by selection to create stable cell lines. Stable transfection has been promoted to be advantageous for the production of recombinant proteins because no re-infection is required, which might provide better lot-to-lot reproducibility in protein production. In this paper, we demonstrate that lytic baculovirus infection of Sf21 cells yields approximately tenfold more bioactive ERβ than cells stably transformed with pIZ/V5-His plasmid under OpIE2 promoter. We provide the first evidence that stable expression of recombinant human ERβ decreases the proliferation of Sf21 cells by inhibition of cell replication in a ligand-independent manner. These results mirror findings in breast cancer cells showing that an increase in ERβ expression decreases cell proliferation. We conclude that baculovirus infection of Sf21 cells is better for human ERβ production than stable-transformation of Sf21 cells.  相似文献   

11.
The baculovirus/insect cell expression system has provided a vital tool to produce a high level of active proteins for many applications. We have developed a very high-density insect cell perfusion process with an ultrasonic filter as a cell retention device. The separation efficiency of the filter was studied under various operating conditions. A cell density of over 30 million cells/mL was achieved in a controlled perfusion bioreactor and cell viability remained greater than 90%. Sf9 cells from a high-density culture and a spinner culture were infected with two recombinant baculoviruses expressing genes for the production of human chitinase and monocyte-colony inhibition factor. The protein yield on a cell basis from infecting high-density Sf9 cells was the same as or higher than that from the spinner Sf9 culture. Virus production from the high-density culture was similar to that from the spinner culture. The results show that the ultrasonic filter did not affect insect cells' ability to support protein expression and virus production following infection with baculovirus. The potential applications of the high-density perfusion culture for large-scale protein expression from Sf9 cells are also highlighted.  相似文献   

12.
The baculovirus–insect cell expression system has been used to produce functional recombinant proteins. The antigen GA733 is a cell‐surface glycoprotein highly expressed on most human colorectal carcinoma cells. Conditions for the expression of GA733 fused to the human immunoglobulin IgG Fc fragment (GA733‐Fc) were optimized in the baculovirus expression system. Several variable factors were adjusted to optimize expression, including the cell line (Sf9 and High Five), multiplicity of infection (MOI) value (0.05, 0.1, 0.5, 1 and 3), post‐infection time (48, 72 and 96 h) and harvested sample (cell culture media (CM) or cell lysate (CL)). In addition, two pFastBac Dual vectors carrying the GA733‐Fc gene were constructed to express GA733‐Fc with or without an endoplasmic reticulum (ER) retention sequence KDEL and used to generate recombinant baculoviruses. Western blot showed that expression depended on the conditions used to express the recombinant proteins. The protein production level and secretion capability differed in each cell line. In Sf9 cells, the highest expression in the CM and CL was obtained with GA733‐Fc at 96 h post‐infection at 0.1 MOI and with GA733‐FcK at 96 h post‐infection at 3 MOI, respectively. In High Five cells, the highest expression in the CM and CL was obtained with GA733‐Fc at 48 h post‐infection at 1 MOI and with GA733‐FcK at 48 h post‐infection at 3 MOI, respectively. These results suggest that the MOI value, post‐infection time and subcellular localization affect expression, and that these conditions can be modified to optimize protein expression in the baculovirus–insect cell system.  相似文献   

13.
HIV—1核蛋白p24在昆虫细胞中的表达   总被引:2,自引:0,他引:2  
谢云  董明 《病毒学报》1997,13(3):202-207
将完整的HIV-1 p24基因克隆到杆状病毒转移质粒中,使用重组转移质粒与野生型杆状病毒DNA共转染Sf9昆虫细胞,经筛选获得带有编码p24基因的重组杆状病毒。重组杆状病毒感染Sf9细胞后在细胞中表达了HIV核蛋白p24。其重组蛋白的分子量为24kD。此重组糖蛋白在免疫荧光,免疫印染和酶联免疫实验中都能被人HIV-1阳性血清和单克隆抗体所识别。  相似文献   

14.
Signaling lymphocytic activation molecule (SLAM; also known as CDw150) has been reported as the receptor of measles virus (MV) interacting with MV hemagglutinin (MVH). In this study, we developed a baculovirus-derived vector, the Bacmid-egfp, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP) under the control of the promoter of very late polyhedrin gene from Autographa californica multiple nucleopolyhedrovirus (AcMNPV), and employed the recombinant baculovirus to express SLAM in Sf9 (Spodoptera frugiperda) cells and investigate SLAM function. The result showed that the integration of the EGFP expression cassette in the Bac-to-Bac system facilitated research with the system without introducing compromises due to its use. SLAM protein fused to His-tag was expressed in Sf9 cells through the modified Bac-to-Bac system. The expressed SLAM was identified as approximately 46 kDa, and it presented on the cell surface, as revealed by fluorescent immunochemical staining and confocal microscopic analysis. The pull-down assay proved that SLAM protein expressed in this system could interact with MVH protein. After incubating with MV vaccine strain S191, cell fusion was only observed in the Sf9 cells expressing both EGFP and SLAM from recombinant baculovirus rather than those expressing EGFP only from the modified viral vector. Furthermore, MV replicated and induced apoptosis in the Sf9 cells with SLAM expression.  相似文献   

15.
The pheromone-processing Kex2p endoprotease of Saccharomyces cerevisiae has been difficult to characterize due to its low level of expression in yeast cells. To overcome this problem, we have overexpressed Kex2p using the baculovirus/insect cell expression system. Spodoptera frugiperda Sf9 insect cells infected with a recombinant baculovirus, containing the complete KEX2 gene which encodes the Kex2p protease (814 amino acids), accumulate an 120-kDa functional form of the enzyme. The inhibition profile of the insect-cell-derived endoprotease is similar to that of the yeast enzyme. The recombinant infected insect cells also secrete into the medium about half of the total Kex2p activity produced. Deleting the carboxyl-terminal tail and the transmembrane domain of Kex2p (Kex2 delta p, 666 amino acids) does not measurably interfere with the enzyme characteristics and results in the secretion of up to 90% of the total enzyme activity. The truncated form, Kex2 delta p, of the endoprotease accumulates in the cell supernatant to 6.7 x 10(5) U/l. The molecular mass of the secreted forms for both the wild-type Kex2p and Kex2 delta p is the same (70 kDa) and is 50-kDa lower than the intracellular form. This result implicates a processing event which gives rise to shorter extracellular forms of both the wild-type Kex2p and Kex2 delta p and which trims their carboxy termini upsteam of amino acid 666. This processing event requires the integrity of the Ser385 of the Kex2p active site.  相似文献   

16.
杆状病毒用于哺乳动物细胞快速高效表达外源基因的研究   总被引:4,自引:2,他引:2  
现已发现杆状病毒可进入某些培养的哺乳动物细胞,这提示可将杆状病毒作为一种对哺乳动物细胞的新型基因转移载体。对杆状病毒转移载体的改造及对哺乳动物细胞的基因转移方式进行了进一步的研究。以绿色荧光蛋白基因为报告基因,利用Bac-to-Bac系统构建了分别含有正向和反向CMV启动子表达盒的两种重组杆状病毒。可观察到CMV启动子在Sf9细胞中可启动报告基因的表达,但表达效率较低。用重组杆状病毒感染后Sf9细胞的培养上清直接与HepG2细胞作用,以流式细胞术检测基因转移效率及荧光表达强度,发现这两种病毒在相同的感染复数下对HepG2细胞具有相似的基因转移及表达效率。同时,利用流式细胞术进一步研究了直接使用重组杆状病毒感染4d后Sf9细胞的培养上清对哺乳动物细胞进行基因转移的方法。通过对HepG2细胞的实验结果显示,将带毒Sf9细胞培养上清(1.2×107PFU/mL)用哺乳动物细胞培养基1倍稀释后,37℃下孵育靶细胞12h(moi=50),可达到较高的基因转移及表达效率,同时不会对细胞造成明显损伤。将重组杆状病毒与脂质体和逆转录病毒这两种系统对HepG2及CV1细胞的基因转移效率进行了比较,结果发现在同样未经浓缩等特殊处理的条件下重组杆状病毒对这两种细胞的基因转移效率是最高的。因此可以认为,经过适当改造后的Bac-to-Bac重组杆状病毒系统可作为一种对哺乳动物细胞简便高效的基因转移表达载体。  相似文献   

17.
We constructed a recombinant baculovirus, based on Autographa californica nuclear polyhedrosis virus, containing the human Na+/H+ antiporter cDNA under control of the polyhedrin promoter. When infected with this recombinant baculovirus, the Sf9 cell line, derived from Spodoptera frugiperda, expresses a fully functional Na+/H+ antiporter as measured by the generation of an amiloride-sensitive Na+ influx in response to an acid load. The Na+/H(+)-exchange activity, not detectable in Sf9 cells, emerges 18 h after infection and continues to increase over the next two days to reach a maximal value about 20-fold higher than in cultured mammalian fibroblasts. Parallel to this activity, infected cells express a single immunoreactive polypeptide of 85 kDa that represents a non-glycosylated form of the 110-kDa mature human antiporter. We estimated that only 10% of the expressed protein is in a functional state. Not only is the antiporter expressed in insect cells phosphorylated, but also, like in mammalian cells, phosphorylation is increased in response to phorbol esters and okadaic acid. Moreover, tumor promoters apparently modify the same antiporter site in both insect and mammalian cells. We conclude that, with this high level of functional expression and apparently conserved signaling machinery, the present system opens the way to the biochemistry of the transporter including identification of the growth factor stimulated phosphorylation sites.  相似文献   

18.
将汉坦病毒H8205株G1P基因的保守序列(约1000bp)作为目的基因插入到BactoBac杆状病毒表达系统的pFastBacHTb供体质粒中,利用Tn7转座子同BacmidDNA同源重组,获得了含目的基因片段的重组杆状病毒DNA,并利用其转染Sf9昆虫细胞,72h后收集细胞悬液,再用该悬液侵染Sf9昆虫细胞,48h后收获病毒.采用IFA分析收获的产物,观察到了特异性的荧光,并且采用SDSPAGE和Western印迹也获得了与预期一致的结果.证明感染后的Sf9昆虫细胞所表达的蛋白中含有能与抗汉坦病毒H8205株多克隆抗体特异性结合目的蛋白.研究表明,采用杆状病毒表达系统可以成功表达出汉坦病毒H8205株包膜糖蛋白G1基因片段,为开发适合的以G1P为抗原的汉坦病毒诊断试剂进行了前期的探索.  相似文献   

19.
The ability of several lepidopteran and dipteran insect cell lines to express human melanotransferrin (p97), a glycosyl phosphatidylinositol (GPI)-anchored, iron-binding sialoglycoprotein, was assessed. Spodoptera frugiperda-derived (Sf9) cell lines, transformed with the p97 gene under control of a baculovirus immediate-early promoter, were able to constitutively express the protein and correctly attach it to the outer cell membrane via a GPI anchor as demonstrated by PI-PLC treatment. In contrast, stable constitutive expression could not be demonstrated with cell lines derived from either Drosophila melanogaster (Kc1 or SL2) or Lymantria dispar (Ld652Y) despite the observation that p97 could be detected in transient expression assays. This may indicate that the long-term expression and accumulation of p97 is inhibitory to Drosophila cells, possibly due to improper localization of the protein and resultant competition for cellular iron. In stably transformed Sf9 cells, p97 was expressed on the cell at a maximal level of 0.18 microg/10(6) cells and was secreted at a maximal rate of 9.03 ng/10(6) cells/h. This level was comparable to the amount expressed with the baculovirus system (0.37 microg/10(6) cells and 31.2 ng/10(6) cells/h) and transformed CHO cells (0.88 microg/10(6) cells and 7.8 ng/10(6) cells/h). Deletion of the GPI cleavage/attachment site resulted in an eightfold increase in the secretion rate of p97, when compared to the intact construct suggesting that the rate-limiting step involves processing of the GPI anchor.  相似文献   

20.
The full-length human renal mineralocorticoid receptor (hMR) has been overproduced in Spodoptera frugiperda (Sf9) insect cells using baculovirus-mediated expression. The overproduced hMR binds aldosterone with high affinity (Kd = 1.36 nM) and has high affinity for cortisol, cortexolone, and progesterone. Immunoprecipitation and immunoblot analysis of the recombinant hMR with MR-specific antibodies reveal three major protein bands with molecular masses of 115, 119, and 125 kDa. hMR isoforms show maximal accumulation at 48 h post-infection with the recombinant baculovirus. Maximal aldosterone binding was detected at 24 h rather than at 48 h post-infection, suggesting that the assembly of hMR monomers into the nonactivated steroid-binding receptor complexes and/or their stability deteriorates after 24 h post-infection. It is estimated by specific aldosterone binding that 1.2 x 10(6) hMR molecules are expressed per Sf9 cell (equivalent to 7 pmol/mg of cytosolic protein) at 24 h post-infection. 5-Fold more receptor molecules/cell are expressed but not detected by steroid binding at 48 h post-infection as determined by immunoblot analysis. Using the MR-specific H10E anti-idiotypic monoclonal antibody, immunoprecipitation of cytosol from recombinant baculovirus-infected Sf9 cells pulse-labeled with 32Pi demonstrated for the first time that the recombinant hMR is highly phosphorylated. The hMR is expressed as 9-10 S oligomeric complexes (Stokes radii approximately 67-85 A) that are slightly heavier than the unactivated glucocorticoid receptor and can be converted to smaller 4 S receptor monomers (Stokes radii approximately 25-55 A) by elevated temperature, pH, and ionic strength. Unlike the glucocorticoid receptor, the oligomeric hMR complex can bind DNA-cellulose without prior activation. Finally, indirect immunofluorescence demonstrated that the hMR is expressed primarily as a cytoplasmic protein that can be induced to translocate to the nucleus upon treatment with hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号