首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To boost our understanding of a recent outbreak of freezing injury, we sought to confirm distinctive features between the shoot tissues of the peach (Prunus persica) cultivars Daewol and Kiraranokiwami by mimicking unseasonable changes of temperatures that occur in the early spring through repeated deacclimation and reacclimation treatments. Patterns of cold hardiness declined dramatically during the deacclimation and rose during the reacclimation in both cultivars. Our results indicated that ‘Daewol’ possessed higher capacity in response to repeated deacclimation and reacclimation treatments than ‘Kiraranokiwami’. ‘Daewol’ showed more sensitive changes in the carbohydrates in response to warm and low temperatures compared with ‘Kiraranokiwami’. ‘Daewol’ indicated almost similar repeated down‐ and up‐patterns in soluble sugar content in response to repeated deacclimation and reacclimation, whereas it indicated repeated up‐ and down‐patterns in starch content. However, ‘Kiraranokiwami’ showed a progressive increase in the soluble sugar content and a progressive decrease in starch content. Notably, patterns of accumulation of a 60‐kDa dehydrin protein encoded by the PpDhn1 gene were confirmed through western blotting and paralleled fluctuations of cold hardiness in both cultivars. Expression of this dehydrin was weak in both cultivars during deacclimation but its band intensity increased during reacclimation. Changes in related genes (β‐amylase, PpDhn1, PpDhn2 and PpDhn3) were positively correlated with changes in cold hardiness throughout the experiment. Our results indicate that recent repeated warm periods may cause premature deacclimation in the early spring, and that more cold‐tolerant cultivar may be more resilient to freezing injury caused by unstable temperature conditions.  相似文献   

2.
A comparative analysis of gene expression profiles during cold acclimation and deacclimation is necessary to elucidate the molecular mechanisms of cold stress responses in higher plants. We analyzed gene expression profiles in the process of cold acclimation and deacclimation (recovery from cold stress) using two microarray systems, the 7K RAFL cDNA microarray and the Agilent 22K oligonucleotide array. By both microarray analyses, we identified 292 genes up-regulated and 320 genes down-regulated during deacclimation, and 445 cold up-regulated genes and 341 cold down-regulated genes during cold acclimation. Many genes up-regulated during deacclimation were found to be down-regulated during cold acclimation, and vice versa. The genes up-regulated during deacclimation were classified into (1) regulatory proteins involved in further regulation of signal transduction and gene expression and (2) functional proteins involved in the recovery process from cold-stress-induced damages and plant growth. We also applied expression profiling studies to identify the key genes involved in the biosynthesis of carbohydrates and amino acids that are known to play important roles in cold acclimation. We compared genes that are regulated during deacclimation with those regulated during rehydration after dehydration to discuss the similarity and difference of each recovery process.Electronic Supplementary Material Supplementary materials are available for this article at  相似文献   

3.
4.
Seasonal changes in levels of reactive oxygen species (ROS), low-molecular weight antioxidants and activities of antioxidant enzymes were analyzed in relation to the freezing tolerance of 1-year-old needles from four populations of Norway spruce. Throughout the study period (from January until May), no significant changes were observed in the superoxide anion radical (O 2 ·? ) or hydrogen peroxide (H2O2) levels in the needles. By contrast, a marked reduction was observed in concentrations of low-molecular weight antioxidants, including flavonoids (FL), ascorbic acid (AsA) and slight glutathione (GSH), during deacclimation. The activities of superoxide dismutase (SOD) (EC. 1.15.1.1.) and guaiacol peroxidase (PO) (EC. 1.11.1.7.) also decreased significantly. The activity of catalase (CAT) (EC. 1.11.1.6.) did not change significantly. Levels of low-molecular weight antioxidants (AsA, FL and GSH) and SOD activity were correlated significantly with freezing tolerance in the studied populations. The reactions were similar in all populations. This suggests that the response of the antioxidant system depends more strongly on climatic conditions than on population origin. The ability of spruce trees to cope with active oxygen species is discussed as an aspect of defense and a factor associated with freezing tolerance.  相似文献   

5.
Plants adapt to freezing stress through cold acclimation, which is induced by nonfreezing low temperatures and accompanied by growth arrest. A later increase in temperature after cold acclimation leads to rapid loss of freezing tolerance and growth resumption, a process called deacclimation. Appropriate regulation of the trade-off between freezing tolerance and growth is necessary for efficient plant development in a changing environment. The cell wall, which mainly consists of polysaccharide polymers, is involved in both freezing tolerance and growth. Still, it is unclear how the balance between freezing tolerance and growth is affected during cold acclimation and deacclimation by the changes in cell wall structure and what role is played by its monosaccharide composition. Therefore, to elucidate the regulatory mechanisms controlling freezing tolerance and growth during cold acclimation and deacclimation, we investigated cell wall changes in detail by sequential fractionation and monosaccharide composition analysis in the model plant Arabidopsis thaliana, for which a plethora of information and mutant lines are available. We found that arabinogalactan proteins and pectic galactan changed in close coordination with changes in freezing tolerance and growth during cold acclimation and deacclimation. On the other hand, arabinan and xyloglucan did not return to nonacclimation levels after deacclimation but stabilized at cold acclimation levels. This indicates that deacclimation does not completely restore cell wall composition to the nonacclimated state but rather changes it to a specific novel composition that is probably a consequence of the loss of freezing tolerance and provides conditions for growth resumption.  相似文献   

6.
Changes in LT50 and carbohydrate levels in response to cold acclimation were monitored in vitro and in vivo in red raspberry ( Rubus idaeus L.) cultivars with different levels of cold hardiness. Entire micropropagated plantlets or shoot tips from 3 cultivars were harvested before, during and after cold acclimation. Cane samples from container-grown plants of 4 cultivars were harvested before and during cold acclimation and deacclimation. Samples were evaluated for cold hardiness (LT50) by controlled freezing, then analyzed for carbohydrates, including starch, sucrose, glucose, fructose and raffinose. Hardiness of cold-acclimated 'Muskoka' and 'Festival' was superior to that of 'Titan' or 'Willamette'. In vitro plantlets had higher levels of soluble carbohydrates on a dry weight basis and higher ratios of sucrose:(glucose+fructose) than the container-grown plants. Total soluble carbohydrates, primarily sucrose, accumulated during cold acclimation in both plantlets (33–56% relative increase) and plants (143–191% relative increase). Sucrose increased 124–165% in plantlets and 253–582% in container-grown plants during acclimation and declined rapidly to the level of control plants during deacclimation. Glucose and fructose also accumulated, but to a lesser extent than sucrose. Raffinose concentrations were very low, but increased significantly during cold acclimation. In vitro, genotype hardiness was related to the high concentrations of total soluble carbohydrates, sucrose and raffinose. In vivo, hardier genotypes had lower concentrations of starch than the less hardy genotypes. These results demonstrated the importance of soluble carbohydrates, especially sucrose, in cold hardening of red raspberry and that the in vitro conditions or controlled acclimation conditions do not necessarily reflect the phenomena observed in vivo.  相似文献   

7.
Previously published results showed that high relative reduction state of PSII (PSII excitation pressure) during both early seedling growth (prehardening) as well as cold deacclimation caused significant changes in growth pattern. The differences in elongation growth rate were related to the cold acclimation of photosynthetic apparatus and to frost resistance. To study changes in the hormonal balance connected with alterations in elongation growth rate observed during prehardening and deacclimation under different PSII excitation pressure (modulated by day-temperatures), endogenous concentration of ABA, GA3 and GA-like substances (GAs) were analysed. Analyses were also performed during cold acclimation and reacclimation of plants characterized by different elongation growth rate triggered by prehardening or deacclimation under different day-temperatures. Growth under high PSII excitation pressure (prehardening) resulted in a significant increase in ABA and a considerable decrease in GAs contents. On the other hand, different ABA content played almost no role in controlling growth rate during cold deacclimation and subsequent reacclimation, when the induction of elongation growth was connected with the changes in concentration of GAs including GA3. The possible role of ABA and GAs in controlling prehardening, cold acclimation and deacclimation is discussed.  相似文献   

8.
Action of norepinephrine (NE), serotonin (5-HT) and dopamine (DA) in the hypothalamus have been reported to play key roles in several homeostatic functions, including thermoregulation. The purpose of this study was to clarify differences in concentrations of NE, 5-HT and DA in several hypothalamic regions after cold exposure of different durations. Rats were exposed to a cold environment (5 °C) for 3 hours (3H), 1 day (1D), 7 days (7D), 14 days (14D), or 28 days (28D). After cold exposure, each hypothalamic region was immediately extracted and homogenized. NE, 5-HT and DA in the extract were measured by high-performance liquid chromatography. We observed marked differences in the concentration of NE in each hypothalamic region after cold exposures. NE in the preoptic area was high only in the 3H group, while it was elevated in the 7D, 14D and 28D groups in the ventromedial hypothalamus. On the other hand, NE in the posterior hypothalamus was low in the 3H, 1D, 7D and 14D groups. Cold exposure did not affect concentrations of 5-HT and DA in these hypothalamic regions. Our results suggest the involvement of NE in each hypothalamic region in maintenance of body temperature, and that the neuronally active site in the hypothalamus seems to change during cold acclimation.  相似文献   

9.
A plasmalemma fraction was isolated from homogenized apple tree (Mains domestica Borkh 'Golden Delicious') hark tissues using aqueous phase partitioning and ultra-centrifugation. Results of marker enzyme assays indicated that a membrane preparation highly enriched in plasma membranes was obtained. ATPase activity in this preparation possessed a high specificity for ATP as substrate, was inhibited by vanadate, diethylstilbcsterol and dicyclohexylcarbocHimide, and was insensitive to inhibitors of mitochondria! and tonoplasl ATPases. Specific activity of the plasma-lemma ATPase increased during cold acclimation prior to the attainment of vegetative maturity. Kinetic parameters (Km, Vln) determined from assays performed at different temperatures (10, 30°C) indicated a differential effect of cold acclimation on enzyme activity. Vm increased during cold acclimation, whereas Km increased when determined at 30°C but declined at 10°C. Acclimation treatments during April and May resulted in alteration of ATPase kinetics in the absence of any increase in bark frost hardiness. Changes in ATPase kinetics may be related more to enhanced low temperature metabolism than to frost hardiness per se.  相似文献   

10.
Z. Ristic  E. N. Ashworth 《Protoplasma》1993,172(2-4):111-123
Summary We studied cell ultrastructure and carbohydrate levels in the leaf tissue ofArabidopsis thaliana L. (Heyn) cv. Columbia during rapid cold acclimation. Freezing tolerance of the leaves from 26 day old plants was determined after 48 h and 10 days at 4°C. Acclimation treatment of 48 h decreased the lethal freezing temperature from –5.7°C to –9.4°C. Freezing tolerance was not altered further by acclimation at 4 °C for 10 days. Ultrastructural changes in the parenchyma cells were evident after 6 to 24 h of cold acclimation. The plasma membrane showed signs of extensive turnover. Evidence of membrane invaginations and sequestering of membrane material was observed. In addition, numerous microvesicles, paramural bodies, and fragments of endoplasmic reticulum were noticed in the vicinity of plasma membrane. Modifications in the structure of cell membranes were evident after 5 days of exposure to low temperature. Small, darkly stained globules were seen on the plasma membrane, tonoplast, chloroplast envelope membrane, mitochondrion outer membrane, dictyosome cisternae membrane, and microvesicle membrane. As far as we are aware, this type of membrane modification has not been described previously in plant cells exposed to low temperature. We propose to call these structures membraglobuli. Acclimation treatment also increased the concentrations of soluble sugars and starch. These observations suggest that cold acclimation inA. thaliana induces changes in both plasma membrane properties and carbohydrate composition.  相似文献   

11.
12.
Hormonal changes accompanying the cold stress (4°C) response that are related to the level of frost tolerance (FT; measured as LT50) and the content of the most abundant dehydrin, WCS120, were compared in the leaves and crowns of the winter wheat (Triticum aestivum L.) cv. Samanta and the spring wheat cv. Sandra. The characteristic feature of the alarm phase (1 day) response was a rapid elevation of abscisic acid (ABA) and an increase of protective proteins (dehydrin WCS120). This response was faster and stronger in winter wheat, where it coincided with the downregulation of bioactive cytokinins and auxin as well as enhanced deactivation of gibberellins, indicating rapid suppression of growth. Next, the ethylene precursor aminocyclopropane carboxylic acid was quickly upregulated. After 3-7 days of cold exposure, plant adaptation to the low temperature was correlated with a decrease in ABA and elevation of growth-promoting hormones (cytokinins, auxin and gibberellins). The content of other stress hormones, i.e., salicylic acid and jasmonic acid, also began to increase. After prolonged cold exposure (21 days), a resistance phase occurred. The winter cultivar exhibited substantially enhanced FT, which was associated with a decline in bioactive cytokinins and auxin. The inability of the spring cultivar to further increase its FT was correlated with maintenance of a relatively higher cytokinin and auxin content, which was achieved during the acclimation period.  相似文献   

13.
14.
The protease activity, as assayed at pH 8.0 with azocasein as substrate, of a ciliate protozoan Tetrahymena pyriformis NT-1, was found to alter by growing the cells at various constant temperatures or at shifted temperatures. The intracellular protease activity, when cells were grown at either constant 39 degrees C or 15 degrees C, was decreased throughout the growth phase with significant secretion into the medium. On the other hand, when the culture temperature was transferred from 39 degrees C to 15 degrees C, the protease activity in cells was greatly increased up to about 28-fold at 8 h after the shift. There was, however, no secretion into the medium during the cold acclimation after the shift, where no cell division occurred. The elevated protease activity was quickly decreased to the control level when the culture was warmed to 39 degrees C after 8-h chilling, and recovery of normal cell division was seen. The marked increase in the protease activity caused by the shift to 15 degrees C was completely blocked by the addition of either cycloheximide or actinomycin D. The thermally induced enhancement of protease activity was found to occur with no different preference between three protease fractions.  相似文献   

15.
The role of ABA in freezing tolerance and cold acclimation in barley   总被引:4,自引:0,他引:4  
The role of ABA in freezing resistance in nonacclimated and cold‐acclimated barley ( Hordeum vulgare L.) was studied. Eleven nonacclimated cultivars differed in their LT50, ranging from −10.8 to −4.8°C. Sugars, free proline, soluble proteins and ABA were analyzed in nonacclimated cultivars and during cold acclimation of one cultivar. There was an inverse correlation between LT50 and both ABA and sucrose contents. Exogenous ABA caused a decrease in the freezing point of leaf tissue in the cultivar with the lowest level of endogenous ABA, but not in the cultivar with the highest level, suggesting that ABA in the latter may be near the optimum endogenous level to induce freezing tolerance. Plants of cv. Aramir treated with ABA or allowed to acclimate to cold temperature increased their soluble sugar content to a similar level. The LT50 of leaves of cold‐acclimated cv. Aramir decreased from −5.8 to −11.4°C, with biphasic kinetics, accumulating proline and soluble sugars with similar kinetics. The biphasic profile observed during cold acclimation could be a direct consequence of cryoprotectant accumulation kinetics. ABA and soluble protein accumulation showed a single step profile, associated mainly with the second phase of the LT50 decrease. Thus, a significant increase in endogenous ABA is part of the response of barley to low temperature and may be required as a signal for the second phase of cold acclimation. Endogenous ABA contents in the nonacclimated state may determine constitutive freezing tolerance.  相似文献   

16.
Glutathione content was evaluated in relation to freezing tolerance in red osier dogwood stems and Valencia orange leaves. Exposure of dogwood and citrus to cold-acclimating conditions in controlled environments led to increases in reduced glutathione (GSH) content which were correlated with freezing tolerance. GSH did not accumulate in field-grown dogwood stems during cold acclimation in fall, but did increase in content prior to deacclimation in late winter. Further studies showed that accumulation of GSH in dogwood at low temperatures is dependent on adequate levels of sulfate in the soil. In citrus, modulation of GSH content by infiltration of leaf tissue with various compounds including GSH did not alter freezing tolerance. Root treatment with N,N-diallyl-2,2-dichloroacetamide (R-25788) increased leaf GSH content, but not hardiness. Evidence presented indicates that glutathione accumulates in plant tissues exposed to low temperatures, but that GSH accumulation is not associated with freezing tolerance.  相似文献   

17.
18.
Cold deacclimation and associated changes in soluble carbohydrates and water status of two Hydrangea species differing in susceptibility to frost injuries was followed under natural conditions. In fully cold hardy plants of H. macrophylla stem freezing tolerance fluctuated in parallel with changes in air temperature, while in a seasonal perspective increased temperatures caused a sigmoid deacclimation pattern in both H. macrophylla and H. paniculata. Timing of deacclimation was approximately synchronized in the two species, but H. paniculata, the hardier species based on mid-winter hardiness, deacclimated faster than H. macrophylla, indicating that deacclimation kinetics were not correlated with mid-winter hardiness. In both species concentrations of soluble sugars decreased during deacclimation and were highly correlated with stem cold hardiness and air temperatures. This suggests that sugar hydrolysis may be an important temperature-driven mechanism of deacclimation in Hydrangea. Accumulation patterns of specific carbohydrates differed between the two species, suggesting that they utilize different strategies to overcome cold. In H. paniculata, deacclimation was associated with an increase in stem water content, which occurred shortly before bud burst and hence may be a prerequisite for leafing out.  相似文献   

19.
The synthesis of cold shock proteins (csps) in response to cold shock, and of cold acclimation proteins (caps) in response to continuous growth at low temperature, in the psychrophileAquaspirillum arcticum was investigated. With two-dimensional gel electrophoresis and computing scanning laser densitometry, cold shock treatments (10° to 0°C, 5° to 0°C, and 10° to 5°C) induced a total of 14 csps, 6 of which were induced by all three cold shocks. The production of caps in response to continuous growth at 0°C was also found. Five of the 8 caps produced were also csps which suggests that these proteins may share a common involvement in cold adaptation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号