首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathione content was evaluated in relation to freezing tolerance in red osier dogwood stems and Valencia orange leaves. Exposure of dogwood and citrus to cold-acclimating conditions in controlled environments led to increases in reduced glutathione (GSH) content which were correlated with freezing tolerance. GSH did not accumulate in field-grown dogwood stems during cold acclimation in fall, but did increase in content prior to deacclimation in late winter. Further studies showed that accumulation of GSH in dogwood at low temperatures is dependent on adequate levels of sulfate in the soil. In citrus, modulation of GSH content by infiltration of leaf tissue with various compounds including GSH did not alter freezing tolerance. Root treatment with N,N-diallyl-2,2-dichloroacetamide (R-25788) increased leaf GSH content, but not hardiness. Evidence presented indicates that glutathione accumulates in plant tissues exposed to low temperatures, but that GSH accumulation is not associated with freezing tolerance.  相似文献   

2.
Cold deacclimation and associated changes in soluble carbohydrates and water status of two Hydrangea species differing in susceptibility to frost injuries was followed under natural conditions. In fully cold hardy plants of H. macrophylla stem freezing tolerance fluctuated in parallel with changes in air temperature, while in a seasonal perspective increased temperatures caused a sigmoid deacclimation pattern in both H. macrophylla and H. paniculata. Timing of deacclimation was approximately synchronized in the two species, but H. paniculata, the hardier species based on mid-winter hardiness, deacclimated faster than H. macrophylla, indicating that deacclimation kinetics were not correlated with mid-winter hardiness. In both species concentrations of soluble sugars decreased during deacclimation and were highly correlated with stem cold hardiness and air temperatures. This suggests that sugar hydrolysis may be an important temperature-driven mechanism of deacclimation in Hydrangea. Accumulation patterns of specific carbohydrates differed between the two species, suggesting that they utilize different strategies to overcome cold. In H. paniculata, deacclimation was associated with an increase in stem water content, which occurred shortly before bud burst and hence may be a prerequisite for leafing out.  相似文献   

3.
Plants adapt to freezing stress through cold acclimation, which is induced by nonfreezing low temperatures and accompanied by growth arrest. A later increase in temperature after cold acclimation leads to rapid loss of freezing tolerance and growth resumption, a process called deacclimation. Appropriate regulation of the trade-off between freezing tolerance and growth is necessary for efficient plant development in a changing environment. The cell wall, which mainly consists of polysaccharide polymers, is involved in both freezing tolerance and growth. Still, it is unclear how the balance between freezing tolerance and growth is affected during cold acclimation and deacclimation by the changes in cell wall structure and what role is played by its monosaccharide composition. Therefore, to elucidate the regulatory mechanisms controlling freezing tolerance and growth during cold acclimation and deacclimation, we investigated cell wall changes in detail by sequential fractionation and monosaccharide composition analysis in the model plant Arabidopsis thaliana, for which a plethora of information and mutant lines are available. We found that arabinogalactan proteins and pectic galactan changed in close coordination with changes in freezing tolerance and growth during cold acclimation and deacclimation. On the other hand, arabinan and xyloglucan did not return to nonacclimation levels after deacclimation but stabilized at cold acclimation levels. This indicates that deacclimation does not completely restore cell wall composition to the nonacclimated state but rather changes it to a specific novel composition that is probably a consequence of the loss of freezing tolerance and provides conditions for growth resumption.  相似文献   

4.
戴素明  成新跃  肖启明  谢丙炎 《生态学报》2006,26(11):3885-3890
对于分布在温带和寒带的线虫,它们只有战胜冬季寒冷的挑战,才能有利于种群的存在与发展。因此,耐寒性是线虫生物学研究中不可忽视的内容。综述了关于线虫在低温胁迫下的耐寒性测定方法、耐寒对策及耐寒机制等方面的研究进展。线虫的耐寒性和昆虫一样,可通过过冷却点和低温存活率两种指标进行评价,但在具体的实验方法上,线虫耐寒性研究有其不同之处。线虫的耐寒对策和耐寒机制具有多样化。耐寒对策主要有耐冻和避冻,二者能共同渗透于线虫的耐寒过程中。耐寒机制包括特殊发育阶段的形成、低温驯化作用、低分子量抗冻物质的聚集、以及高分子量抗冻蛋白和热休克蛋白的产生,等等。此外,还强调应从多个角度研究线虫的耐寒性,如寒冷敏感型线虫的研究、寄生线虫的耐寒对策研究以及交叉胁迫的研究。  相似文献   

5.
Woody plants in the temperate and boreal zone undergo annual cycle of growth and dormancy under seasonal changes. Growth cessation and dormancy induction in autumn are prerequisites for the development of substantial cold hardiness in winter. During evolution, woody plants have developed different ecotypes that are closely adapted to the local climatic conditions. In this study, we employed distinct photoperiodic ecotypes of silver birch (Betula pendula Roth) to elucidate differences in these adaptive responses under seasonal changes. In all ecotypes, short day photoperiod (SD) initiated growth cessation and dormancy development, and induced cold acclimation. Subsequent low temperature (LT) exposure significantly enhanced freezing tolerance but removed bud dormancy. Our results suggested that dormancy and freezing tolerance might partially overlap under SD, but these two processes were regulated by different mechanisms and pathways under LT. Endogenous abscisic acid (ABA) levels were also altered under seasonal changes; the ABA level was low during the growing season, then increased in autumn, and decreased in winter. Compared with the southern ecotype, the northern ecotype was more responsive to seasonal changes, resulting in earlier growth cessation, cold acclimation and dormancy development in autumn, higher freezing tolerance and faster dormancy release in winter, and earlier bud flush and growth initiation in spring. In addition, although there was no significant ecotypic difference in ABA level during growing season, the rates and degrees of ABA alterations were different between the ecotypes in autumn and winter, and could be related to ecotypic differences in dormancy and freezing tolerance.  相似文献   

6.
黑果腺肋花楸枝条的深超冷与抗寒性   总被引:1,自引:0,他引:1  
差热分析法测得黑果腺肋花楸枝条有深超冷。黑果腺肋花楸低温放热峰的起始温度和组织褐变法测得的致死温度相吻合。以黑果腺肋花楸低温放热峰的起始温度作为枝条的抗寒性指标,抗寒性的季节变化表现为:晚秋至12月上旬为抗寒性驯化阶段,12月上旬至次年2月上旬为最强抗寒性维持阶段,2月上旬以后开始脱锻炼。初冬后的锻炼过程和早春的脱锻炼过程十分迅速并与环境温度密切相关。  相似文献   

7.
The role of ABA in freezing tolerance and cold acclimation in barley   总被引:4,自引:0,他引:4  
The role of ABA in freezing resistance in nonacclimated and cold‐acclimated barley ( Hordeum vulgare L.) was studied. Eleven nonacclimated cultivars differed in their LT50, ranging from −10.8 to −4.8°C. Sugars, free proline, soluble proteins and ABA were analyzed in nonacclimated cultivars and during cold acclimation of one cultivar. There was an inverse correlation between LT50 and both ABA and sucrose contents. Exogenous ABA caused a decrease in the freezing point of leaf tissue in the cultivar with the lowest level of endogenous ABA, but not in the cultivar with the highest level, suggesting that ABA in the latter may be near the optimum endogenous level to induce freezing tolerance. Plants of cv. Aramir treated with ABA or allowed to acclimate to cold temperature increased their soluble sugar content to a similar level. The LT50 of leaves of cold‐acclimated cv. Aramir decreased from −5.8 to −11.4°C, with biphasic kinetics, accumulating proline and soluble sugars with similar kinetics. The biphasic profile observed during cold acclimation could be a direct consequence of cryoprotectant accumulation kinetics. ABA and soluble protein accumulation showed a single step profile, associated mainly with the second phase of the LT50 decrease. Thus, a significant increase in endogenous ABA is part of the response of barley to low temperature and may be required as a signal for the second phase of cold acclimation. Endogenous ABA contents in the nonacclimated state may determine constitutive freezing tolerance.  相似文献   

8.
To gain more insight into the relation between plasma membranechanges and cold hardiness in mulberry trees (Morus bombysisKoidz. cv Goroji), biochemical and biophysical changes in theplasma membrane were studied during cold deacclimation in spring.The majority of the changes in the plasma membranes that occurredduring the cold acclimation process in the fall/winter werereversed following deacclimation in the spring. Significantdecreases in phospholipid content, degree of unsaturation inphospholipid fatty acids, and membrane fluidity were observedin the plasma membranes during cold deacclimation. The sterolto phospholipid ratio increased with decreasing cold hardiness.Reverse changes were also detected in the majority of proteinand glycoprotein components. These reversible changes in theplasma membranes are considered to be involved in the mechanismof cold hardiness of plants. 1Contribution No. 2766 from the Institute of Low TemperatureScience. (Received July 10, 1985; Accepted October 25, 1985)  相似文献   

9.
In northern China, freezing injury is observed frequently in the rare species Magnolia wufengensis but not in the more common species Magnolia denudata. To investigate the role of the phytohormone abscisic acid (ABA) on frost tolerance in these two species, exogenous ABA was applied to the seedlings and then physiological and biochemical responses were measured during cold acclimation. Shoot growth cessation was stimulated by ABA in M. wufengensis but not in M. denudata. Abscisic acid inhibited shoot growth in M. wufengensis but not in M. denudata. Treatment with ABA stimulated leaf senescence in both species, and this effect was greater in M. denudata. For both species, ABA-treated plants exhibited bud dormancy sooner and had an increased tolerance to freezing, decreased water content and increased accumulation of proline, glucose, and fructose in shoots. These effects were generally greater for M. denudata. Freezing tolerance was significantly correlated with content of water, proline, glucose, and fructose for both species, but freezing tolerance was significantly correlated with raffinose content only in M. wufengensis. We conclude that exogenous ABA could increase cold acclimation and improve cold hardiness of both Magnolia species, although M. denudata was more responsive to ABA than M. wufengensis, which might result from a greater dehydration and accumulation of proline and certain soluble sugars.  相似文献   

10.
昆虫耐寒性研究   总被引:33,自引:4,他引:33  
景晓红  康乐 《生态学报》2002,22(12):2202-2207
昆虫是变温动物,气候变化是造成种群季节消长的基本原因之一。尤其在不良的低温环境中,昆虫耐寒力的高低是其种群存在与发展的种要前提,昆虫对低温的适应能力及其机理也因而成为昆虫生态学和生物进化研究中的一个深受重视的问题,本文论述了与耐寒性直接相关的过冷却点昆虫的抗寒对策,明确了昆虫耐寒性的一些基本概念,一方面从环境影响昆虫的角度对耐寒性的一般规律,如季节性变化,地理变异快速冷驯化的作用等做了简要的概念括,另一方面阐述了昆虫适应环境的生理生化机制,包括低分子量的抗冻物质的产生,冰核剂的作用及抗冻蛋白的功能等做了简要的概括,另一方面简单述了昆虫适应环境的生理生化机制,包括低分子量的抗冻物质的产生,冰核剂的作用及抗冻蛋白的功能等。强调昆虫与环境相互作用过程中的生态生理适应,并指出昆虫耐寒性应当与生活史中别的因素联系起来,这样才能对耐寒性有一个更加全面的理解。  相似文献   

11.
Abstract.  The Antarctic collembolan, Cryptopygus antarcticus (Willem), can switch its supercooling point (SCP) between 'winter' and 'summer' modes of cold hardiness over a matter of hours. High resolution temporal scaling of the acquisition and loss of cold hardiness is undertaken by assaying changes in the proportion of animals freezing below −15 °C in response to cooling rate, acclimation temperature, and access to food and moisture. Rapid de-acclimation to the 'summer' modal state is readily achieved after 1–6 h in response to warming and access to food; however, rapid acclimation to the 'winter' modal state is only evident in response to slow cooling and narrow ranges of temperature (0–5 °C). The rapid loss of cold tolerance at higher temperatures with access to food, in particular, emphasizes this species' opportunistic responses to resource availability in the short polar summers. Cold hardiness is apparently more readily traded off against nutrient acquisition than vice versa in this maritime Antarctic species.  相似文献   

12.
Previously published results showed that high relative reduction state of PSII (PSII excitation pressure) during both early seedling growth (prehardening) as well as cold deacclimation caused significant changes in growth pattern. The differences in elongation growth rate were related to the cold acclimation of photosynthetic apparatus and to frost resistance. To study changes in the hormonal balance connected with alterations in elongation growth rate observed during prehardening and deacclimation under different PSII excitation pressure (modulated by day-temperatures), endogenous concentration of ABA, GA3 and GA-like substances (GAs) were analysed. Analyses were also performed during cold acclimation and reacclimation of plants characterized by different elongation growth rate triggered by prehardening or deacclimation under different day-temperatures. Growth under high PSII excitation pressure (prehardening) resulted in a significant increase in ABA and a considerable decrease in GAs contents. On the other hand, different ABA content played almost no role in controlling growth rate during cold deacclimation and subsequent reacclimation, when the induction of elongation growth was connected with the changes in concentration of GAs including GA3. The possible role of ABA and GAs in controlling prehardening, cold acclimation and deacclimation is discussed.  相似文献   

13.
14.
15.
植物抗寒及其基因表达研究进展   总被引:6,自引:0,他引:6  
曹琴  孔维府  温鹏飞 《生态学报》2004,24(4):806-811
植物经过逐渐降低的温度从而提高抗寒能力 ,这个过程被人们称为低温驯化。植物低温驯化过程是一个复杂的生理、生化和能量代谢变化过程 ,这些变化主要包括膜系统的稳定性、可溶性蛋白的积累和小分子渗透物质 ,比如脯氨酸、糖等 ,这些变化中的一些是植物抗寒必需的 ,而另外一些变化不是必需的。主要对冷害和低温生理生化变化、低温诱导表达基因的功能和作用、低温驯化的调节机制及其信号转导方面进行了综述。通过差别筛选 c DNA文库的方法已经鉴定了许多低温诱导表达、进而提高植物抗寒能力的基因 ,其中有脱水素、COR基因和 CBF1转录因子等。低温信号的感受、转导和调节表达是低温驯化的关键环节 ,低温信号的转导过程与干旱胁迫之间具有一定的交叉 ,这为利用 ABA等来提高植物抗寒能力成为可能 ,相信不久的将来人们可以通过提高植物抗寒能力从而增加经济产量成为现实。  相似文献   

16.
Guy CL  Haskell D 《Plant physiology》1987,84(3):872-878
Spinach (Spinacia oleracea L. cv Bloomsdale) seedlings cultured in vitro were used to study changes in protein synthesis during cold acclimation. Seedlings grown for 3 weeks postsowing on an inorganic-nutrient-agar medium were able to increase their freezing tolerance when grown at 5°C. During cold acclimation at 5°C and deacclimation at 25°C, the kinetics of freezing tolerance induction and loss were similar to that of soil-grown plants. Freezing tolerance increased after 1 day of cold acclimation and reached a maximum within 7 days. Upon deacclimation at 25°C, freezing tolerance declined within 1 day and was largely lost by the 7th day. Leaf proteins of intact plants grown at 5 and 25°C were in vivo radiolabeled, without wounding or injury, to high specific activities with [35S]methionine. Leaf proteins were radiolabeled at 0, 1, 2, 3, 4, 7, and 14 days of cold acclimation and at 1, 3, and 7 days of deacclimation. Up to 500 labeled proteins were separated by two-dimensional gel electrophoresis and visualized by fluorography. A rapid and stable change in the protein synthesis pattern was observed when seedlings were transferred to the low temperature environment. Cold-acclimated leaves contained 22 polypeptides not found in nonacclimated leaves. Exposure to 5°C induced the synthesis of three high molecular weight cold acclimation proteins (CAPs) (Mr of about 160,000, 117,000, and 85,000) and greatly increased the synthesis of a fourth high molecular weight protein (Mr 79,000). These proteins were synthesized during day 1 and throughout the 14 day exposure to 5°C. During deacclimation, the synthesis of CAPs 160, 117, and 85 was greatly reduced by the first day of exposure to 25°C. However, CAP 79 was synthesized throughout the 7 day deacclimation treatment. Thus, the induction at low temperature and termination at warm temperature of the synthesis of CAPs 160, 117, and 85 was highly correlated with the induction and loss of freezing tolerance. Cold acclimation did not result in a general posttranslational modification of leaf proteins. Most of the observed changes in the two-dimensional gel patterns could be attributed to the de novo synthesis of proteins induced by low temperature. In spinach leaf tissue, heat shock altered the pattern of protein synthesis and induced the synthesis of several heat shock proteins (HSPs). One polypeptide synthesized in cold-acclimated leaves had a molecular weight and net charge (Mr 79,000, pI 4.8) similar to that of a HSP (Mr 83,000, pI 4.8). However, heat shock did not increase the freezing tolerance, and cold acclimation did not increase heat tolerance over that of nonacclimated plants, but heat-shocked leaf tissue was more tolerant to high temperatures than nonacclimated or cold-acclimated leaf tissue. When protein extracts from heat-shocked and cold-acclimated leaves were mixed and separated in the same two-dimensional gel, the CAP and HSP were shown to be two separate polypeptides with slightly different isoelectric points and molecular weights.  相似文献   

17.
Cell suspension cultures were initiated from callus derived from xylem tissues of peach [Prunus persica (L.) Batsch]. Cold acclimation was induced (LT50 of-13°C) in cell suspensions at 3°C in the dark for 10 days. Freezing tolerance returned to the level of nonacclimated cells (LT50 of –4.5°C) when cold-acclimated cells were transferred to 24°C (in dark) for 3 days. Addition of 75 M abscisic acid (ABA) to the growth medium failed to induce cold acclimation after cells were cultured for 5 days at 24°C. Microvacuolation, cytoplasmic augmentation and disappearance of starch grains were observed in cells that were cold-acclimated by exposure to low temperature. Similar ultrastructural alterations were not observed in ABA-treated cells. Several qualitative and quantitative changes in proteins were noted during both cold acclimation and ABA treatment. Both the ultrastructural and protein changes observed during cold acclimation were reversed during deacclimation. The relationship of these changes to cold acclimation in peach cell-cultures is discussed.Abbreviations ABA abscisic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - IBA indole-3-butyric acid - Ms Murashige & Skoog - PMSF phenylmethylsulfonyl fluoride - LT50 or Freezing Tolerance temperature that resulted in 50% decrease in TTC reduction - TTC 2,3,5-triphenyltetrazolium chloride  相似文献   

18.
For trees, the ability to obtain and maintain sufficient levels of frost hardiness in late autumn, winter and spring is crucial. We report that temperatures during dormancy induction influence bud set, frost hardiness, tolerance to cold storage, timing of bud burst and spring frost hardiness in seedlings of Norway spruce (Picea abies (L.) Karst.). Bud set occurred later in 12°C than in 21°C, and later in cool nights (7°C) than in constant temperature. One weekly frost night (−2.5°C) improved frost hardiness. Cool nights reduced frost hardiness early, but improved hardiness later during cold acclimation. Buds and stems were slightly hardier in 21°C than in 12°C, while needles were clearly hardier in 12°C. Cold daytime temperature, cool nights and one weekly frost night improved cold storability (0.7°C). Seedlings receiving high daytime temperatures burst buds later, and were less injured by light frost some days after bud burst.  相似文献   

19.
20.
During cold acclimation, winter rye ( Secale cereale L.) plants develop the ability to tolerate freezing temperatures by forming ice in intercellular spaces and xylem vessels. In this study, proteins were extracted from the apoplast of rye leaves to determine their role in controlling extracellular ice formation. Several polypeptides in the 15 to 32 kDa range accumulated in the leaf apoplast during cold acclimation at 5°C and decreased during deacclimation at 20°C. A second group of polypeptides (63, 65 and 68 kDa) appeared only when the leaves were maximally frost tolerant. Ice nucleation activity, as well as the previously reported antifreeze activity, was higher in apoplastic extracts from cold-acclimated than from nonacclimated rye leaves. These results indicate that apoplastic proteins exert a direct influence on the growth of ice. In addition, freezing injury was greater in extracted cold-acclimated leaves than in unextracted cold-acclimated leaves, which suggests that the proteins present in the apoplast are an important component of the mechanism by which winter rye leaves tolerate ice formation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号