首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different chimeric proteins combining the non-catalytic C-terminal putative cellulose binding domain of Clostridium cellulovorans endoglucanase-xylanase D (EngD) with its proline-threonine rich region PT-linker, PTCBD(EngD), cellulose binding domain of C. cellulovorans cellulose binding protein A, CBD(CbpA), cohesin domains Cip7, Coh6 and CipC1 from different clostridial species and recombinant antibody binding protein LG were constructed, expressed, purified and analyzed. The solubilities of chimeric proteins containing highly soluble domains Cip7, CipC1 and LG were not affected by fusion with PTCBD(EngD). Insoluble domain Coh6 was solubilized when fused with PTCBD(EngD). In contrast, fusion with CBD(CbpA) resulted in only a slight increase in solubility of Coh6 and even decreased solubility of CipC1 greatly. PTCBD(EngD) and Cip7-PTCBD(EngD) were shown to bind regenerated commercial amorphous cellulose Cuprophan. The purity of Cip7-PTCBD(EngD) eluted from Cuprophan was comparable to that purified by conventional ion exchange chromatography. The results demonstrated that PTCBD(EngD) can serve as a bi-functional fusion tag for solubilization of fusion partners and as a domain for the immobilization, enrichment and purification of molecules or cells on regenerated amorphous cellulose.  相似文献   

2.
Extracellular production of recombinant proteins in Escherichia coli has several advantages over cytoplasmic or periplasmic production. However, nonpathogenic laboratory strains of E. coli generally excrete only trace amounts of proteins into the culture medium under normal growth conditions. Here we report a systematic proteome-based approach for developing a system for high-level extracellular production of recombinant proteins in E. coli. First, we analyzed the extracellular proteome of an E. coli B strain, BL21(DE3), to identify naturally excreted proteins, assuming that these proteins may serve as potential fusion partners for the production of recombinant proteins in the medium. Next, overexpression and excretion studies were performed for the 20 selected fusion partners with molecular weights below 40 kDa. Twelve of them were found to allow fused proteins to excrete into the medium at considerable levels. The most efficient excreting fusion partner, OsmY, was used as a carrier protein to excrete heterologous proteins into the medium. E. coli alkaline phosphatase, Bacillus subtilis alpha-amylase, and human leptin used as model proteins could all be excreted into the medium at concentrations ranging from 5 to 64 mg/L during the flask cultivation. When only the signal peptide or the mature part of OsmY was used as a fusion partner, no such excretion was observed; this confirmed that these proteins were truly excreted rather than released by outer membrane leakage. The recombinant protein of interest could be recovered by cleaving off the fusion partner by enterokinase as demonstrated for alkaline phosphatase as an example. High cell density cultivation allowed production of these proteins to the levels of 250-700 mg/L in the culture medium, suggesting the good potential of this approach for the excretory production of recombinant proteins.  相似文献   

3.
4.
The construction of a vector which overproduces the enzyme, CTP:CMP-3-deoxy-D-manno-octulosonate cytidylyl-transferase (CMP-KDO synthetase or CKS) and its use as an expression vector for producing heterologous proteins in E. coli is described. The vector, which includes a modified lac promoter and synthetic ribosome binding site upstream of the native kdsB gene (encoding CKS), produces CKS at levels as high as 70% of the total cellular proteins. Several heterologous gene sequences have been fused to the 3'-end of the kdsB gene with resulting protein fusions produced at a level of up to 40% of the total cellular proteins.  相似文献   

5.
The identification of optimal genotypes that result in improved production of recombinant metabolites remains an engineering conundrum. In the present work, various strategies to reengineer central metabolism in Escherichia coli were explored for robust synthesis of flavanones, the common precursors of plant flavonoid secondary metabolites. Augmentation of the intracellular malonyl coenzyme A (malonyl-CoA) pool through the coordinated overexpression of four acetyl-CoA carboxylase (ACC) subunits from Photorhabdus luminescens (PlACC) under a constitutive promoter resulted in an increase in flavanone production up to 576%. Exploration of macromolecule complexes to optimize metabolic efficiency demonstrated that auxiliary expression of PlACC with biotin ligase from the same species (BirAPl) further elevated flavanone synthesis up to 1,166%. However, the coexpression of PlACC with Escherichia coli BirA (BirAEc) caused a marked decrease in flavanone production. Activity improvement was reconstituted with the coexpression of PlACC with a chimeric BirA consisting of the N terminus of BirAEc and the C terminus of BirAPl. In another approach, high levels of flavanone synthesis were achieved through the amplification of acetate assimilation pathways combined with the overexpression of ACC. Overall, the metabolic engineering of central metabolic pathways described in the present work increased the production of pinocembrin, naringenin, and eriodictyol in 36 h up to 1,379%, 183%, and 373%, respectively, over production with the strains expressing only the flavonoid pathway, which corresponded to 429 mg/liter, 119 mg/liter, and 52 mg/liter, respectively.  相似文献   

6.
4-Hydroxyphenylacetic acid (4HPAA) is an important building block for synthesizing drugs, agrochemicals, and biochemicals, and requires sustainable production to meet increasing demand. Here, we use a 4HPAA biosensor to overcome the difficulty of conventional library screening in identification of preferred mutants. Strains with higher 4HPAA production and tolerance are successfully obtained by atmospheric and room temperature plasma (ARTP) mutagenesis coupled with adaptive laboratory evolution using this biosensor. Genome shuffling integrates preferred properties in the strain GS-2-4, which produces 25.42 g/L 4HPAA. Chromosomal mutations of the strain GS-2-4 are identified by whole genome sequencing. Through comprehensive analysis and experimental validation, important genes, pathways and regulations are revealed. The best gene combination in inverse engineering, acrD-aroG, increases 4HPAA production of strain GS-2-4 by 37% further. These results emphasize precursor supply and stress resistance are keys to efficient 4HPAA biosynthesis. Our work shows the power of biosensor-assisted screening of mutants from libraries. The methods developed here can be easily adapted to construct cell factories for the production of other aromatic chemicals. Our work also provides many valuable target genes to build cell factories for efficient 4HPAA production in the future.  相似文献   

7.
Heparosan is a crucial-polysaccharide precursor for the chemoenzymatic synthesis of heparin, a widely used anticoagulant drug. Presently, heparosan is mainly extracted with the potential risk of contamination from Escherichia coli strain K5, a pathogenic bacterium causing urinary tract infection. Here, a nonpathogenic probiotic, E. coli strain Nissle 1917 (EcN), was metabolically engineered to carry multiple copies of the 19-kb kps locus and produce heparosan to 9.1 g/L in fed-batch fermentation. Chromosome evolution driven by antibiotics was employed to amplify the kps locus, which governed the synthesis and export of heparosan from EcN at 21 mg L−1 OD−1. The average copy number of kps locus increased from 1 to 24 copies per cell, which produced up to 104 mg L-1 OD−1 of heparosan in the shaking flask cultures of engineered strains. The following in-frame deletion of recA stabilized the recombinant duplicates of chromosomal kps locus and the productivity of heparosan in continuous culture for at least 56 generations. Fed-batch fermentation of the engineered strain EcN8 was carried out to bring the yield of heparosan up to 9.1 g/L. Heparosan from the fermentation culture was further purified at a 75% overall recovery. The structure of purified heparosan was characterized and further modified by N-sulfotransferase with 3′-phosphoadenosine-5′-phosphosulfate as the sulfo-donor. The analysis of element composition showed that heparosan was N-sulfated by over 80%. These results indicated that duplicating large DNA cassettes up to 19-kb, followed by high-cell-density fermentation, was promising in the large-scale preparation of chemicals and could be adapted to engineer other industrial-interest bacteria metabolically.  相似文献   

8.
We describe a generic protocol for the overproduction and purification of recombinant proteins in Escherichia coli. The strategy utilizes a dual His6-maltose binding protein (HisMBP) affinity tag that can be removed from the target protein by digestion of the fusion protein at a designed site by tobacco etch virus protease. The MBP moiety serves to enhance the solubility and promote the proper folding of its fusion partners, and the polyhistidine tag facilitates its purification to homogeneity. This protocol is divided into three stages, each of which takes approximately 1 week to complete: (i) construction of a HisMBP fusion vector; (ii) a pilot experiment to assess the yield and solubility of the target protein; and (iii) the large-scale production and purification of the target protein.  相似文献   

9.
A pH-inducible promoter system was characterized and its potential applicability in recombinant protein production was evaluated using a plasmid construct, pSM552-545C(-), in which the promoter and activator coding sequences of the cad operon were inserted into the upstream region of a lacZ' reporter gene. Graded gene expression levels with respect to culture pH between 8.0 and 5.5 were observed and the induction range can be as high as 200-fold. The effects of several cultivation parameters, including pH, temperature, induction cell density, and inoculum size, were systematically examined. The practical application of this expression system to high level production of recombinant proteins was successfully demonstrated using a rich medium, superbroth. An extremely high recombinant protein productivity at a value of approximately 1.4 g/L with a specific expression level as high as 35% of total cellular protein can be obtained in a simple batch cultivation. The behavior of this expression system was further investigated using chemostat cultures. An uncommon relationship between the volumetric or specific recombinant protein activity and the dilution rate, with a maximal activity at a dilution rate of approximately 0.4 h(-1)was observed. (c) 1995 John Wiley & Sons, Inc.  相似文献   

10.
11.

In recent years, antimicrobial peptides (AMPs) have attracted increasing attention. The microbial cells provide a simple, cost-effective platform to produce AMPs in industrial quantities. While AMP production as fusion proteins in microorganisms is commonly used, the recovery of AMPs necessitates the use of expensive proteases and extra purification steps. Here, we develop a novel fusion protein DAMP4-F-pexiganan comprising a carrier protein DAMP4 linked to the AMP, pexiganan, through a long, flexible linker. We show that this fusion protein can be purified using a non-chromatography approach and exhibits the same antimicrobial activity as the chemically synthesized pexiganan peptide without any cleavage step. Activity of the fusion protein is dependent on a long, flexible linker between the AMP and carrier domains, as well as on the expression conditions of the fusion protein, with low-temperature expression promoting better folding of the AMP domain. The production of DAMP4-F-pexiganan circumvents the time-consuming and costly steps of chromatography-based purification and enzymatic cleavages, therefore shows considerable advantages over traditional microbial production of AMPs. We expect this novel fusion protein, and the studies on the effect of linker and expression conditions on its antimicrobial activity, will broaden the rational design and production of antimicrobial products based on AMPs.

  相似文献   

12.
We describe a method for the isolation of recombinant single-chain antibodies in a biologically active form. The single-chain antibodies are fused to a cellulose binding domain as a single-chain protein that accumulates as insoluble inclusion bodies upon expression in Escherichia coli. The inclusion bodies are then solubilized and denatured by an appropriate chaotropic solvent, then reversibly immobilized onto a cellulose matrix via specific interaction of the matrix with the cellulose binding domain (CBD) moiety. The efficient immobilization that minimizes the contact between folding protein molecules, thus preventing their aggregation, is facilitated by the robustness of the Clostridium thermocellum CBD we use. This CBD is unique in retaining its specific cellulose binding capability when solubilized in up to 6 M urea, while the proteins fused to it are fully denatured. Refolding of the fusion proteins is induced by reducing with time the concentration of the denaturing solvent while in contact with the cellulose matrix. The refolded single-chain antibodies in their native state are then recovered by releasing them from the cellulose matrix in high yield of 60% or better, which is threefold or higher than the yield obtained by using published refolding protocols to recover the same scFvs. The described method should have general applicability for the production of many protein-CBD fusions in which the fusion partner is insoluble upon expression.  相似文献   

13.
We have expressed receptor-binding domains of human alpha 2-macroglobulin and rat alpha 1-macroglobulin in Escherichia coli. Expression levels of both recombinants were quite high, but the human one was insoluble, probably forming inclusion bodies. The rat domain, which lacks the human disulfide, was produced in a soluble form and readily purified by two simple chromatographic steps. Purified recombinant rat alpha 1-macroglobulin receptor-binding domain was fully functional in binding to the alpha-macroglobulin receptor on human fibroblasts. This 142 residue domain should serve as an excellent template for analyzing the structural requirements for alpha-macroglobulin receptor ligation and dissecting the varied biological functions resulting from such ligation.  相似文献   

14.
Fusion expression provides an effective means for the biosynthesis of longer peptides in Escherichia coli. However, the commonly used fusion tags are primarily suitable for laboratory scale applications due to the high cost of commercial affinity resins. Herein, a novel approach exploiting hirudin as a multipurpose fusion tag in combination with tobacco etch virus (TEV) protease cleavage has been developed for the efficient and cost-effective production of a 43-amino acid model peptide lunasin in E. coli at preparative scale. A fusion gene which allows for lunasin to be N-terminally fused to the C-terminus of hirudin through a flexible linker comprising a TEV protease cleavage site was designed and cloned in a secretion vector pTASH. By cultivation in a 7-L bioreactor, the fusion protein was excreted into the culture medium at a high yield of ~380?mg/L, which was conveniently recovered and purified by inexpensive HP20 hydrophobic chromatography at a recovery rate of ~80%. After polishing and cleavage with TEV protease, the finally purified lunasin was obtained with ≥95% purity and yield of ~86?mg/L culture medium. Conclusively, this hirudin tagging strategy is powerful in the production of lunasin and could be applicable for the production of other peptides at preparative scale.  相似文献   

15.
SFH,a recombinant staphylokinase-based fusion protein linked by the factor Xa recognition peptide at the N-terminus of hirudin,is a promising therapeutic candidate for thromboembolic diseases.To develop SFH into a new thrombolytic agent,scaled-up production was carried out to provide sufficient preparation for animal safety and clinical studies.Here,we describe a pilot-scale cultivation and purification process for the production of SFH.A high-cell-density fed-batch cultivation for the production of SFH in E.coli was developed in a 40-L bioreactor,which produced about 1.1 g/L of recombinant protein.SFH was purified to homogeneity from the E.coli lysate by expanded bed adsorption chromatography and anion-exchange chromatography,with over 99% purity and 54% recovery.Moreover,the residual endotoxin content was less than 0.5 EU/mL.The molecular weight and in vitro bioactivity of SFH were also determined by electrospray ionization-mass spectrometry (ESI-MS) and fibrinolytic activity assay,respectively.  相似文献   

16.
G Banting  J P Luzio  P Braghetta  B Brake  K K Stanley 《Gene》1991,107(1):127-132
Despite the large number of expression vectors now available, none provide the facility of allowing fusion and nonfusion protein production from the same vector system. In some situations it is preferable to obtain an insoluble fusion protein, in others a soluble nonfusion protein may be required. We have designed, constructed and tested a modification of the pEX vectors, in which it is possible to express the product of a suitably inserted cDNA either as part of a Cro-beta-galactosidase (Cro-beta Gal) fusion or as a delta Cro fusion which contains only nine noninsert-encoded amino acids at its N terminus. The conversion from Cro-beta Gal to delta Cro fusion protein production is achieved by a simple intramolecular deletion of lacZ sequence from the pUBEX vector, to create the pUBSEX variant. Plasmid pUBEX can be induced to produce large amounts of insoluble Cro-beta Gal fusion proteins, whereas pUBSEX will produce predominantly soluble delta Cro fusion proteins.  相似文献   

17.
EstA is an outer membrane-anchored esterase from Pseudomonas aeruginosa. An inactive EstA variant was used as an anchoring motif for the Escherichia coli cell-surface display of lipolytic enzymes. Flow cytometry analysis and measurement of lipase activity revealed that Bacillus subtilis lipase LipA, Fusarium solani pisi cutinase and one of the largest lipases presently known, namely Serratia marcescens lipase were all efficiently exported by the EstA autotransporter and also retained their lipolytic activities upon cell surface exposition. EstA provides a useful tool for surface display of lipases including variant libraries generated by directed evolution thereby enabling the identification of novel enzymes with interesting biological and biotechnological ramifications.  相似文献   

18.
19.
The high-yield production of vascular endothelial growth factor (VEGF), as a major therapeutic target in pathological angiogenesis and diabetic wound healing, provides critical advantages for in vitro studies. In the present study, to improve the soluble production of human VEGF8–109 (receptor-binding domain (RBD) of VEGF or VEGF RBD), at first VEGF 8-109 encoded gene was expressed in SHuffle T7 E. coli. Moreover, in two steps, the protein production was optimized based on Taguchi design, by evaluating optimal levels of various induction parameters, such as cell density in induction time, temperature, inducer concentration, and media components. The results indicated that the highest amount of the protein was achieved in TB medium containing glycerol 6 g L−1, peptone to yeast extract ratio 1:1, ethanol 3% and MgSO4 4 g L−1, under inducing with 0.05 mM IPTG in OD600 of 0.7 at 24 °C for 22 h. The bioactivity of the purified protein was confirmed by cell proliferation assay. Finally, bench-scale production of VEGF8–109 was performed under the optimum conditions and resulted in 182 mg of soluble VEGF8–109 expressed per liter. Totally, our results can be considered as a basis for economical production of the recombinant VEGF in future.  相似文献   

20.
In the application of engineered Escherichia coli in industrial polyhydroxybutyrate production process, one of the major concerns is the induction of the metabolic pathway. In this study, we developed a stress-induced system by which the PHB biosynthesis pathways can be induced under stress conditions. Fermentation results showed that recombinant E. coli DH5α (pQKZ103) harboring this system was able to accumulate polyhydroxybutyrate up to 85.8% of cell dry weight in minimal glucose medium without adding any inducer. Growth experiment with GFP as a reporter indicated that the induction of this system happened at the late exponential phase and was sensitive to stressed environment. This system can also be applied in many other biotechnological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号