共查询到20条相似文献,搜索用时 12 毫秒
1.
In response to injury, epithelial cells migrate across the denuded tissue to rapidly close the wound and restore barrier, thereby preventing the entry of pathogens and leakage of fluids. Efficient, proper migration requires a range of processes, acting both inside and out of the cell. Among the extracellular responses is the expression of various matrix metalloproteinases (MMPs). Though long thought to ease cell migration simply by breaking down matrix barriers, findings from various models demonstrate that MMPs facilitate (and sometimes repress) cell movement by other means, such as affecting the state of cell–matrix interactions or proliferation. In this Prospect, we review some key data indicting how specific MMPs function via their activity as proteinases to control closure of epithelial wounds. J. Cell. Biochem. 108: 1233–1243, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
2.
Role of matrix metalloproteinases in melanoma cell invasion 总被引:11,自引:0,他引:11
Cutaneous melanomas are notorious for their tendency to metastasize. Essential steps in this process are the degradation of basement membranes and remodeling of the extracellular matrix (ECM) by proteolytic enzymes such as matrix metalloproteinases (MMPs), which are regulated by their tissue inhibitors (TIMPs). An MMP expression is not restricted to tumor cells but is also found in stromal cells, indicating that stroma-derived proteases may contribute to melanoma progression. The MMPs have been shown to interact with a broad range of non-matrix proteins including adhesion molecules, growth factors and mediators of angiogenesis and apoptosis. In this review, we evaluate new insights into the interplay of MMPs and their molecular partners in melanoma progression. 相似文献
3.
《Cell Adhesion & Migration》2013,7(4):337-341
Matrix metalloproteases (MMPs) are key regulatory molecules in the formation, remodeling, and degradation of extracellular matrix (ECM) components in both physiological and pathological processes in many tissues. In skeletal muscle, MMPs play an important role in the homeostasis and maintenance of myofiber functional integrity by breaking down ECM and regulating skeletal muscle cell migration, differentiation and regeneration. Skeletal muscle satellite cells, a group of quiescent stem cells located between the basement membrane and the plasmalemma of myofibers, are responsible for lifelong maintenance and repairing, which can be activated and as a result migrate underneath the basement membrane to promote regeneration at the injured site. MMPs are able to degrade ECM components, thereby facilitating satellite cell migration and differentiation. This current review will focus on the critical roles of MMPs in skeletal muscle injury and repair, which include satellite cell activation with migration and differentiation. The effect of MMPs on muscle regeneration and fibrous scar tissue formation, as well as therapeutic insights for the future will be explored. 相似文献
4.
5.
Once specified to become neural crest (NC), cells occupying the dorsal portion of the neural tube disrupt their cadherin-mediated cell-cell contacts, acquire motile properties, and embark upon an extensive migration through the embryo to reach their ultimate phenotype-specific sites. The understanding of how this movement is regulated is still rather fragmentary due to the complexity of the cellular and molecular interactions involved. An additional intricate aspect of the regulation of NC cell movement is that the timings, modes and patterns of NC cell migration are intimately associated with the concomitant phenotypic diversification that cells undergo during their migratory phase and the fact that these changes modulate the way that moving cells interact with their microenvironment. To date, two interplaying mechanisms appear central for the guidance of the migrating NC cells through the embryo: one involves secreted signalling molecules acting through their cognate protein kinase/phosphatase-type receptors and the other is contributed by the multivalent interactions of the cells with their surrounding extracellular matrix (ECM). The latter ones seem fundamental in light of the central morphogenetic role played by the intracellular signals transduced through the cytoskeleton upon integrin ligation, and the convergence of these signalling cascades with those triggered by cadherins, survival/growth factor receptors, gap junctional communications, and stretch-activated calcium channels. The elucidation of the importance of the ECM during NC cell movement is presently favoured by the augmenting knowledge about the macromolecular structure of the specific ECM assembled during NC development and the functional assaying of its individual constituents via molecular and genetic manipulations. Collectively, these data propose that NC cell migration may be governed by time- and space-dependent alterations in the expression of inhibitory ECM components; the relative ratio of permissive versus non-permissive ECM components; and the supramolecular assembly of permissive ECM components. Six multidomain ECM constituents encoded by a corresponding number of genes appear to date the master ECM molecules in the control of NC cell movement. These are fibronectin, laminin isoforms 1 and 8, aggrecan, and PG-M/version isoforms V0 and V1. This review revisits a number of original observations in amphibian and avian embryos and discusses them in light of more recent experimental data to explain how the interaction of moving NC cells with these ECM components may be coordinated to guide cells toward their final sites during the process of organogenesis. 相似文献
6.
Role of matrix metalloproteinases in inflammatory bowel disease 总被引:6,自引:0,他引:6
Recent evidence demonstrates that the increased expression and activity of matrix metalloproteinases (MMPs) may contribute to intestinal tissue injury and inflammation in inflammatory bowel disease, and that MMP inhibition might be a new therapeutic approach to controlling inflammatory response. In addition, MMPs may play a crucial role in physiological and pathophysiological reactions such as leukocyte accumulation into inflamed tissue, cytokine production from inflammatory and epithelial cells, T lymphocyte homing to the intestine, wound healing and proliferation of epithelial cells, and intestinal innate immunity. This review focuses on recent progress in elucidating the biological and pathological roles of MMPs in inflammatory bowel disease. 相似文献
7.
8.
Khasigov PZ Ktzoeva SA Gatagonova TM Tareeva IE Grachev SV Berezov TT 《Biochemistry. Biokhimii?a》2000,65(5):519-524
This review considers molecular mechanisms that underlie disorders in the structure and metabolism of renal extracellular matrix in diabetic nephropathy. The contribution of the increased synthesis of renal extracellular matrix proteins in the accumulation of renal mesangial matrix is considered, and the important role of the degradation system of the extracellular matrix proteins in the development of fibrosis is also shown. Data on changes in mRNA expression for the matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) in various forms of diabetic nephropathy are presented. A correlation is established between changes in the balance of MMP proteolytic activity and TIMP activity and the accumulation of extracellular matrix. 相似文献
9.
10.
Eva Korpos Chuan Wu Jian Song Rupert Hallmann Lydia Sorokin 《Cell and tissue research》2010,339(1):47-57
The extracellular matrix (ECM) exists in various biochemical and structural forms that can act either as a barrier to migrating
leukocytes, in the case of basement membranes, or provide a physical scaffold supporting or guiding migration (interstitial
matrix). This review focuses on basement membranes and our current knowledge of the way that leukocytes transmigrate this
protein barrier, with emphasis on T lymphocytes. Recent data suggest that the classical concept of cell-matrix adhesion requires
revision with respect to leukocyte-ECM interactions. Whereas specific receptors may be required for leukocyte recognition
of ECM molecules or three-dimensional structural domains, the role of adhesion in migration as perceived from the traditional
studies of adherent cell-ECM interactions is less clear. Further, the indirect effects of ECM such as the binding and presentation
of cytokines or chemotactic factors may more profoundly influence the directed migration of normally non-adherent leukocytes
than the migration of adherent cells such as epithelial cells or fibroblasts. Proteases (in particular matrix metalloproteinases)
released at sites of inflammation can selectively process ECM, cell surface molecules or soluble factors, which may result
in the release of bioactive fragments that can function as chemoattractants for different leukocyte subsets or may modulate
the activity/function of resident mesenchymal and immune cells. Current findings suggest that different leukocyte types employ
different mechanisms to migrate across or through the ECM; this might be determined by the composition and organization of
the ECM itself. 相似文献
11.
Cell migration through extracellular matrix: membrane-type metalloproteinases make the way 总被引:6,自引:0,他引:6
Quaranta V 《The Journal of cell biology》2000,149(6):1167-1170
12.
Aline Appert-Collin Amar Bennasroune Pierre Jeannesson Christine Terryn Guy Fuhrmann Hamid Morjani 《Cell Adhesion & Migration》2017,11(4):316-326
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a member of Low Density Lipoprotein Receptor (LDLR) family, which is ubiquitously expressed and which is described as a multifunctional endocytic receptor which mediates the clearance of various extracellular matrix molecules including serine proteinases, proteinase-inhibitor complexes, and matricellular proteins. Several studies showed that high LRP-1 expression promotes breast cancer cell invasiveness, and LRP-1 invalidation leads to cell motility abrogation in both tumor and non-tumor cells. Furthermore, our group has reported that LRP-1 silencing prevents the invasion of a follicular thyroid carcinoma despite increased pericellular proteolytic activities from MMP2 and uPA using a 2D-cell culture model. As the use of 3D culture systems is becoming more and more popular due to their promise as enhanced models of tissue physiology, the aim of the present work is to characterize for the first time how the 3D collagen type I matrix may impact the ability of LRP-1 to regulate the migratory properties of thyroid carcinoma using as a model FTC-133 cells. Our results show that inhibition of LRP-1 activity or expression leads to morphological changes affecting cell-matrix interactions, reorganizations of the actin-cytoskeleton especially by inhibiting FAK activation and increasing RhoA activity and MLC-2 phosphorylation, thus preventing cell migration. Taken together, our results suggest that LRP-1 silencing leads to a decrease of cell migratory capacity in a 3D configuration. 相似文献
13.
Matrix metalloproteinases (MMPs) are zinc-endopeptidases with multifactorial actions in central nervous system (CNS) physiology and pathology. Accumulating data suggest that MMPs have a deleterious role in stroke. By degrading neurovascular matrix, MMPs promote injury of the blood-brain barrier, edema and hemorrhage. By disrupting cell-matrix signaling and homeostasis, MMPs trigger brain cell death. Hence, there is a movement toward the development of MMP inhibitors for acute stroke therapy. But MMPs may have a different role during delayed phases after stroke. Because MMPs modulate brain matrix, they may mediate beneficial plasticity and remodeling during stroke recovery. Here, we show that MMPs participate in delayed cortical responses after focal cerebral ischemia in rats. MMP-9 is upregulated in peri-infarct cortex at 7-14 days after stroke and is colocalized with markers of neurovascular remodeling. Treatment with MMP inhibitors at 7 days after stroke suppresses neurovascular remodeling, increases ischemic brain injury and impairs functional recovery at 14 days. MMP processing of bioavailable VEGF may be involved because inhibition of MMPs reduces endogenous VEGF signals, whereas additional treatment with exogenous VEGF prevents MMP inhibitor-induced worsening of infarction. These data suggest that, contrary to MMP inhibitor therapies for acute stroke, strategies that modulate MMPs may be needed for promoting stroke recovery. 相似文献
14.
Modelling cell migration strategies in the extracellular matrix 总被引:1,自引:0,他引:1
Painter KJ 《Journal of mathematical biology》2009,58(4-5):511-543
The extracellular matrix (ECM) is a highly organised structure with the capacity to direct cell migration through their tendency to follow matrix fibres, a process known as contact guidance. Amoeboid cell populations migrate in the ECM by making frequent shape changes and have minimal impact on its structure. Mesenchymal cells actively remodel the matrix to generate the space in which they can move. In this paper, these different types of movement are studied through simulation of a continuous transport model. It is shown that the process of contact guidance in a structured ECM can spatially organise cell populations. Furthermore, when combined with ECM remodelling, it can give rise to cellular pattern formation in the form of "cell-chains" or networks without additional environmental cues such as chemoattractants. These results are applied to a simple model for tumour invasion where it is shown that the interactions between invading cells and the ECM structure surrounding the tumour can have a profound impact on the pattern and rate of cell infiltration, including the formation of characteristic "fingering" patterns. The results are further discussed in the context of a variety of relevant processes during embryonic and adult stages. 相似文献
15.
I. S. Chernoivanenko An. A. Minin A. A. Minin 《Russian Journal of Developmental Biology》2013,44(3):144-157
Cell migration plays a crucial role in embryonic development, wound healing, regeneration, inflammation, and immune response, as well as in dissemination of malignant tumors. Vimentin is the marker of migrating cells, but its role in cell migration is still unclear. However, recent studies have revealed novel functions for vimentin related to the migration, such as determination of cellular polarity, regulation of cell contact formation, and arrangement and transport of signal proteins involved in cell motility. The review sums up the latest data on vimentin functions and its involvement in molecular mechanisms underlying cell migration. Early studies demonstrated that vimentin expression during embryonic development is associated with cell migration. However, having obtained vimentin knockout mice without apparent impairments in development and ability to reproduce, doubts have appeared if vimentin is required for cell migration during embryonic development. In the present review, we also discuss involvement of vimentin in migration processes at different stages of development and try to resolve current contradictions concerning the role of vimentin in various events of cell migration. 相似文献
16.
Tomlinson ML Garcia-Morales C Abu-Elmagd M Wheeler GN 《Mechanisms of development》2008,125(11-12):1059-1070
Macrophages are essential in development, repair and pathology of a variety of tissues via their roles in tissue remodelling, wound healing and inflammation. These biological functions are also associated with a number of human diseases, for example tumour associated macrophages have well defined functions in cancer progression. Xenopus embryonic macrophages arise from a haematopoietic stem cell population by direct differentiation and act as the main mechanism of host defence, before lymphoid cells and a circulatory system have developed. This function is conserved in mouse and human development. Macrophages express a number of matrix metalloproteinases (MMPs), which are central to their function. MMPs are a large family of zinc-dependent endoproteases with multiple roles in extracellular matrix remodelling and the modulation of signalling pathways. We have previously shown MMP-7 to be expressed by Xenopus embryonic macrophages. Here we investigate the role of MMP-7 and two other MMPs (MMP-18 and MMP-9) that are also expressed in the migrating macrophages. Using morpholino (MO) mediated knockdown of each of the MMPs we demonstrate that they are necessary for normal macrophage migration in vivo. The loss-of-function effect can be rescued using the specific MMPs, altered to be resistant to morpholinos but not by overexpression of the other MMPs. Double and triple morpholino knockdowns further suggest that these MMPs act combinatorily to promote embryonic macrophage migration. Thus, our results imply that these three MMPs have distinct functions, which together are crucial to mediate macrophage migration in the developing embryo. This demonstrates conclusively that MMPs are required for normal macrophage cell migration in the whole organism. 相似文献
17.
Role of matrix metalloproteinases and their inhibitors in tumor invasion and metastasis 总被引:9,自引:0,他引:9
Khasigov PZ Podobed OV Gracheva TS Salbiev KD Grachev SV Berezov TT 《Biochemistry. Biokhimii?a》2003,68(7):711-717
The role of various matrix metalloproteinases (MMP)—such as gelatinases, stromelysins, matrilysin, collagenase-3, and membrane-bound MMP (MB-MMP)—in tumor invasion and metastasis is discussed. Data suggesting significance for malignant growth of the expression level of these enzymes and also of their activators and inhibitors are presented. It is concluded that at different stages of tumor progression the activity of different MMPs is displayed, which is regulated by various growth factors and oncogenes. Different malignancies are characterized by changes in activities of specific MMPs. Data are presented which show significance of the ratio between the MMP activity and that of tissue inhibitors of metalloproteinases (TIMP) in tumor invasion and metastasis, especially in connection with a dual role of TIMP as both MMP inhibitors and activators. 相似文献
18.
Tochowicz A Goettig P Evans R Visse R Shitomi Y Palmisano R Ito N Richter K Maskos K Franke D Svergun D Nagase H Bode W Itoh Y 《The Journal of biological chemistry》2011,286(9):7587-7600
Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion. 相似文献
19.
20.
《Biochemical and biophysical research communications》2020,521(2):402-407
Snake venom metalloproteinases (SVMPs) are key toxins involved in local inflammatory reactions after snakebites. This study aimed to investigate the effect of SVMP domains on the alterations in leukocyte-endothelium interactions in the microcirculation of mouse cremaster muscle. We studied three toxins: BnP1, a PI-toxin isolated from Bothrops neuwiedi venom, which only bears a catalytic domain; Jararhagin (Jar), a PIII-toxin isolated from Bothrops jararaca venom with a catalytic domain, as well as ECD-disintegrin and cysteine-rich domains; and Jar-C, which is produced from the autolysis of Jar and devoid of a catalytic domain. All these toxins induced an increase in the adhesion and migration of leukocytes. By inhibiting the catalytic activity of Jar and BnP1 with 1.10-phenanthroline (oPhe), leukocytes were no longer recruited. Circular dichroism analysis showed structural changes in oPhe-treated Jar, but these changes were not enough to prevent the binding of Jar to collagen, which occurred through the ECD-disintegrin domain. The results showed that the catalytic domain of SVMPs is the principal domain responsible for the induction of leukocyte recruitment and suggest that the other domains could also present inflammatory potential only when devoid of the catalytic domain, as with Jar-C. 相似文献