首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Cytokines such as interleukins are known to be involved in the development of neuropathic pain through activation of neuroglia. However, the role of chemokine (C-C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, in the nociceptive transmission remains unclear. We found that CCL-1 was upregulated in the spinal dorsal horn after partial sciatic nerve ligation. Therefore, we examined actions of recombinant CCL-1 on behavioural pain score, synaptic transmission, glial cell function and cytokine production in the spinal dorsal horn. Here we show that CCL-1 is one of the key mediators involved in the development of neuropathic pain. Expression of CCL-1 mRNA was mainly detected in the ipsilateral dorsal root ganglion, and the expression of specific CCL-1 receptor CCR-8 was upregulated in the superficial dorsal horn. Increased expression of CCR-8 was observed not only in neurons but also in microglia and astrocytes in the ipsilateral side. Recombinant CCL-1 injected intrathecally (i.t.) to naive mice induced allodynia, which was prevented by the supplemental addition of N-methyl-𝒟-aspartate (NMDA) receptor antagonist, MK-801. Patch-clamp recordings from spinal cord slices revealed that application of CCL-1 transiently enhanced excitatory synaptic transmission in the substantia gelatinosa (lamina II). In the long term, i.t. injection of CCL-1 induced phosphorylation of NMDA receptor subunit, NR1 and NR2B, in the spinal cord. Injection of CCL-1 also upregulated mRNA level of glial cell markers and proinflammatory cytokines (IL-1β, TNF-α and IL-6). The tactile allodynia induced by nerve ligation was attenuated by prophylactic and chronic administration of neutralizing antibody against CCL-1 and by knocking down of CCR-8. Our results indicate that CCL-1 is one of the key molecules in pathogenesis, and CCL-1/CCR-8 signaling system can be a potential target for drug development in the treatment for neuropathic pain.  相似文献   

4.
The present study was undertaken to further investigate the role of glial cells in the development of the neuropathic pain-like state induced by sciatic nerve ligation in mice. At 7 days after sciatic nerve ligation, the immunoreactivities (IRs) of the specific astrocyte marker glial fibrillary acidic protein (GFAP) and the specific microglial marker OX-42, but not the specific oligodendrocyte marker O4, were increased on the ipsilateral side of the spinal cord dorsal horn in nerve-ligated mice compared with that on the contralateral side. Furthermore, a single intrathecal injection of activated spinal cord microglia, but not astrocytes, caused thermal hyperalgesia in naive mice. Furthermore, 5-bromo-2'-deoxyuridine (BrdU)-positive cells on the ipsilateral dorsal horn of the spinal cord were significantly increased at 7 days after nerve ligation and were highly co-localized with another microglia marker, ionized calcium-binding adaptor molecule 1 (Iba1), but neither with GFAP nor a specific neural nuclei marker, NeuN, in the spinal dorsal horn of nerve-ligated mice. The present data strongly support the idea that spinal cord astrocytes and microglia are activated under the neuropathic pain-like state, and that the proliferated and activated microglia directly contribute to the development of a neuropathic pain-like state in mice.  相似文献   

5.
6.
Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain.  相似文献   

7.
Zhang FE  Cao JL  Zhang LC  Zeng YM 《生理学报》2005,57(5):545-551
本研究旨在观察脊髓p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)在坐骨神经压迫性损伤所致神经病理性痛中的作用。雄性Sprague-Dawley大鼠鞘内置管后,4-0丝线松结扎左侧坐骨神经制作慢性压迫性损伤(chronic constriction injury,CCI)模型。CCI后第5天,鞘内注射不同剂量的p38 MAPK特异性抑制剂SB203580,并在给药前及给药后不同时间点,分别用von Frey机械痛敏监测仪和热辐射刺激仪监测大鼠损伤侧后爪机械和热刺激反应闽值,用免疫印迹技术(Western blot)观察给药前后脊髓磷酸化p38 MAPK(p-p38 MAPK)和磷酸化环磷酸腺苷反应元件结合蛋白(phosphorylated cAMP response element binding protein,pCREB)表达变化。结果发现:坐骨神经压迫性损伤引起脊髓p-p38 MAPK蛋白表达明显增加;鞘内注射SB203580能剂量依赖性逆转CCI引起的机械性痛觉异常和热痛觉过敏及脊髓水平p-p38 MAPK表达的增加,也明显抑制CCI引起的脊髓pCREB表达的增加。结果提示,脊髓水平p38 MAPK激活参与坐骨神经压迫性损伤所致神经病理性痛的发展,其作用可能通过pCREB介导。  相似文献   

8.
9.
10.
Neuropathic pain after spinal cord injury (SCI) is developed in about 80% of SCI patients and there is no efficient therapeutic drug to alleviate SCI-induced neuropathic pain. Here we examined the effect of estrogen on SCI-induced neuropathic pain at below-level and its effect on neuroinflammation as underlying mechanisms. Neuropathic pain is developed at late phase after SCI and a single dose of 17β-estradiol (100, 300?μg/kg) were administered to rats with neuropathic pain after SCI through intravenous injection. As results, both mechanical allodynia and thermal hyperalgesia were significantly reduced by 17β-estradiol compared to vehicle control. Both microglia and astrocyte activation in the lamina I and II of L4-5 dorsal horn was also inhibited by 17β-estradiol. In addition, the levels of p-p38MAPK and p-ERK known to be activated in microglia and p-JNK known to be activated in astrocyte were significantly decreased by 17β-estradiol. Furthermore, the mRNA expression of inflammatory mediators such as Il-1β, Il-6, iNos, and Cox-2 was more attenuated in 17β-estradiol-treated group than in vehicle-treated group. Particularly, we found that the analgesic effect by 17β-estradiol was mediated via estrogen receptors, which are expressed in dorsal horn neurons. These results suggest that 17β-estradiol may attenuate SCI-induced neuropathic pain by inhibiting microglia and astrocyte activation followed inflammation.  相似文献   

11.
Chronic neuropathic pain is a common consequence of spinal cord injury (SCI), develops over time and negatively impacts quality of life, often leading to substance abuse and suicide. Recent evidence has demonstrated that reactive oxygen species (ROS) play a role in contributing to neuropathic pain in SCI animal models. This investigation examines four compounds that reduce ROS and the downstream lipid peroxidation products, apocynin, 4‐oxo‐tempo, U‐83836E, and tirilazad, and tests if these compounds can reduce nocioceptive behaviors in chronic SCI animals. Apocynin and 4‐oxo‐tempo significantly reduced abnormal mechanical hypersensitivity measured in forelimbs and hindlimbs in a model of chronic SCI‐induced neuropathic pain. Thus, compounds that inhibit ROS or lipid peroxidation products can be used to ameliorate chronic neuropathic pain.

  相似文献   


12.
13.
Toll-like receptors (TLRs) play an essential role in innate immune responses and in the initiation of adaptive immune responses. Microglia, the resident innate immune cells in the CNS, express TLRs. In this study, we show that TLR3 is crucial for spinal cord glial activation and tactile allodynia after peripheral nerve injury. Intrathecal administration of TLR3 antisense oligodeoxynucleotide suppressed nerve injury-induced tactile allodynia, and decreased the phosphorylation of p38 mitogen-activated protein kinase, but not extracellular signal-regulated protein kinases 1/2, in spinal glial cells. Antisense knockdown of TLR3 also attenuated the activation of spinal microglia, but not astrocytes, caused by nerve injury. Furthermore, down-regulation of TLR3 inhibited nerve injury-induced up-regulation of spinal pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. Conversely, intrathecal injection of the TLR3 agonist polyinosine–polycytidylic acid induced behavioral, morphological, and biochemical changes similar to those observed after nerve injury. Indeed, TLR3-deficient mice did not develop tactile allodynia after nerve injury or polyinosine–polycytidylic acid injection. Our results indicate that TLR3 has a substantial role in the activation of spinal glial cells and the development of tactile allodynia after nerve injury. Thus, blocking TLR3 in the spinal glial cells might provide a fruitful strategy for treating neuropathic pain.  相似文献   

14.
15.
The pathophysiology of spinal cord injury (SCI) involves primary injury and secondary injury. For the irreversibility of primary injury, therapies of SCI mainly focus on secondary injury, whereas inflammation is considered to be a major target for secondary injury; however the regulation of inflammation in SCI is unclear and targeted therapies are still lacking. In this study, we found that the expression of BRD4 was correlated with pro‐inflammatory cytokines after SCI in rats; in vitro study in microglia showed that BRD4 inhibition either by lentivirus or JQ1 may both suppress the MAPK and NF‐κB signalling pathways, which are the two major signalling pathways involved in inflammatory response in microglia. BRD4 inhibition by JQ1 not only blocked microglial M1 polarization, but also repressed the level of pro‐inflammatory cytokines in microglia in vitro and in vivo. Furthermore, BRD4 inhibition by JQ1 can improve functional recovery and structural disorder as well as reduce neuron loss in SCI rats. Overall, this study illustrates that microglial BRD4 level is increased after SCI and BRD4 inhibition is able to suppress M1 polarization and pro‐inflammatory cytokine production in microglia which ultimately promotes functional recovery after SCI.  相似文献   

16.
After spinal cord injury (SCI), disruption of blood–spinal cord barrier (BSCB) elicits blood cell infiltration such as neutrophils and macrophages, contributing to permanent neurological disability. Previous studies show that epidermal growth factor (EGF) produces potent neuroprotective effects in SCI models. However, little is known that whether EGF contributes to the integrity of BSCB. The present study is performed to explore the mechanism of BSCB permeability changes which are induced by EGF treatment after SCI in rats. In this study, we demonstrate that EGF administration inhibits the disruption of BSCB permeability and improves the locomotor activity in SCI model rats. Inhibition of the PI3K/Akt pathways by a specific inhibitor, LY294002, suppresses EGF‐induced Rac1 activation as well as tight junction (TJ) and adherens junction (AJ) expression. Furthermore, the protective effect of EGF on BSCB is related to the activation of Rac1 both in vivo and in vitro. Blockade of Rac1 activation with Rac1 siRNA downregulates EGF‐induced TJ and AJ proteins expression in endothelial cells. Taken together, our results indicate that EGF treatment preserves BSCB integrity and improves functional recovery after SCI via PI3K‐Akt‐Rac1 signalling pathway.  相似文献   

17.
18.
19.
The association between chronic pain and depression is widely recognized, the comorbidity of which leads to a heavier disease burden, increased disability and poor treatment response. This study examined nociceptive responding to mechanical and thermal stimuli prior to and following L5‐L6 spinal nerve ligation (SNL), a model of neuropathic pain, in the olfactory bulbectomized (OB) rat model of depression. Associated changes in the expression of genes encoding for markers of glial activation and cytokines were subsequently examined in the amygdala, a key brain region for the modulation of emotion and pain. The OB rats exhibited mechanical and cold allodynia, but not heat hyperalgesia, when compared with sham‐operated counterparts. Spinal nerve ligation induced characteristic mechanical and cold allodynia in the ipsilateral hindpaw of both sham and OB rats. The OB rats exhibited a reduced latency and number of responses to an innocuous cold stimulus following SNL, an effect positively correlated with interleukin (IL)‐6 and IL‐10 mRNA expression in the amygdala, respectively. Spinal nerve ligation reduced IL‐6 and increased IL‐10 expression in the amygdala of sham rats. The expression of CD11b (cluster of differentiation molecule 11b) and GFAP (glial fibrillary acidic protein), indicative of microglial and astrocyte activation, and IL‐1β in the amygdala was enhanced in OB animals when compared with sham counterparts, an effect not observed following SNL. This study shows that neuropathic pain‐related responding to an innocuous cold stimulus is altered in an animal model of depression, effects accompanied by changes in the expression of neuroinflammatory genes in the amygdala .  相似文献   

20.
The cell surface antigen CD90 has recently been established as a promising marker for liver cancer stem cells. This study aimed to investigate potential implications of SHH/Gli signalling in CD90+ liver cancer stem cells. Correlation of the expression of SHH signalling components and CD90 in liver cancer cells and clinical tissues, as well as in enriched CD90+ liver cancer stem cells and the TCGA database, were analysed by quantitative RT‐PCR, Western blotting and flow cytometry. Functional analysis was conducted by siRNA‐mediated CD90, Gli1 and Gli3 gene knockdown, SHH treatment and application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody in CD90+ liver cancer stem cells, followed by cell proliferation, migration, sphere formation and tumorigenicity assays. CD90 expression exhibited a high positive correlation with Gli1 and Gli3 in multiple liver cancer cell lines and human cancerous liver tissues, both of which showed a significant increase in liver cancer. Analysis of TCGA data revealed an association of CD90, Gli1 and Gli3 with a short overall survival and positive correlation between CD90 expression and Gli3 expression level. The stem cell potentials of CD90+ 97L liver cancer cells were greatly impaired by Gli1/3 knockdown with siRNA but enhanced by SHH treatment. Application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody showed the CD90 and SHH/Gli‐regulated liver cancer stem cell functions were mediated by the IL6/JAK2/STAT3 pathway. The stem cell properties of CD90+ liver cancer cells are regulated by the downstream SHH/Gli and IL6/JAK2/STAT3 signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号