首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Drosophila gene mushroom bodies tiny (mbt) encodes a putative p21-activated kinase (PAK), a family of proteins that has been implicated in a multitude of cellular processes including regulation of the cytoskeleton, cell polarisation, control of MAPK signalling cascades and apoptosis. The mutant phenotype of mbt is characterised by fewer neurones in the brain and the eye, indicating a role of the protein in cell proliferation, differentiation or survival. We show that mutations in mbt interfere with photoreceptor cell morphogenesis. Mbt specifically localises at adherens junctions of the developing photoreceptor cells. A structure-function analysis of the Mbt protein in vitro and in vivo revealed that the Mbt kinase domain and the GTPase binding domain, which specifically interacts with GTP-loaded Cdc42, are important for Mbt function. Besides regulation of kinase activity, another important function of Cdc42 is to recruit Mbt to adherens junctions. We propose a role for Mbt as a downstream effector of Cdc42 in photoreceptor cell morphogenesis.  相似文献   

3.
Nearly all processes in cells are regulated by the coordinated interplay between reversible protein phosphorylation and dephosphorylation. Therefore, it is a great challenge to identify all phosphorylation substrates of a single protein kinase to understand its integration into intracellular signaling networks. In this work, we developed an assay that holds promise as being useful for the identification of phosphorylation substrates of a given protein kinase of interest. The method relies on irreversible inhibition of endogenous kinase activities with the ATP analogue 5'-fluorosulfonylbenzoyladenosine (5'FSBA). 5'FSBA-treated cell extracts are then combined with a purified activated kinase to allow phosphorylation of putative substrate proteins, followed by a two-step purification protocol and identification by fingerprint mass spectrometry. Specifically, we applied this method to identify new phosphorylation substrates of the Drosophila p21-activated kinase (PAK) protein Mbt. Among candidate proteins identified by mass spectrometry, the dynactin complex subunit dynamitin was verified as a bona fide Mbt phosphorylation substrate and interaction partner, suggesting an involvement of this PAK protein in the regulation of dynactin-dependent cellular processes.  相似文献   

4.
5.
6.
《The Journal of cell biology》1993,121(5):1133-1140
The cadherin cell adhesion system plays a central role in cell-cell adhesion in vertebrates, but its homologues are not identified in the invertebrate. alpha-Catenins are a group of proteins associated with cadherins, and this association is crucial for the cadherins' function. Here, we report the cloning of a Drosophila alpha-catenin gene by low stringent hybridization with a mouse alpha E-catenin probe. Isolated cDNAs encoded a 110-kD protein with 60% identity to mouse alpha E- catenin, and this protein was termed D alpha-catenin. The gene of this protein was located at the chromosome band 80B. Immunostaining analysis using a mAb to D alpha-catenin revealed that it was localized to cell- cell contact sites, expressed throughout development and present in a wide variety of tissues. When this protein was immunoprecipitated from detergent extracts of Drosophila embryos or cell lines, several proteins co-precipitated. These included the armadillo product which was known to be a Drosophila homologue of beta-catenin, another cadherin-associated protein in vertebrates, and a 150-kD glycoprotein. These results strongly suggest that Drosophila has a cell adhesion machinery homologous to the vertebrate cadherin-catenin system.  相似文献   

7.
8.
9.
Adenomatous polyposis coli protein (APC) is an important tumour suppressor in the human colon epithelium. In a complex with glycogen synthase kinase-3 (GSK-3), APC binds to and destabilizes cytoplasmic ('free') beta-catenin. Here, using a yeast two-hybrid screen for proteins that bind to the Drosophila beta-catenin homologue, Armadillo, we identify a new Drosophila APC homologue, E-APC. E-APC also binds to Shaggy, the Drosophila GSK-3 homologue. Interference with E-APC function produces embryonic phenotypes like those of shaggy mutants. Interestingly, E-APC is concentrated in apicolateral adhesive zones of epithelial cells, along with Armadillo and E-cadherin, which are both integral components of the adherens junctions in these zones. Various mutant conditions that cause dissociation of E-APC from these zones also obliterate the segmental modulation of free Armadillo levels that is normally induced by Wingless signalling. We propose that the Armadillo-destabilizing protein complex, consisting of E-APC, Shaggy, and a third protein, Axin, is anchored in adhesive zones, and that Wingless signalling may inhibit the activity of this complex by causing dissociation of E-APC from these zones.  相似文献   

10.
beta-catenin is a target for the ubiquitin-proteasome pathway.   总被引:38,自引:3,他引:35       下载免费PDF全文
H Aberle  A Bauer  J Stappert  A Kispert    R Kemler 《The EMBO journal》1997,16(13):3797-3804
beta-catenin is a central component of the cadherin cell adhesion complex and plays an essential role in the Wingless/Wnt signaling pathway. In the current model of this pathway, the amount of beta-catenin (or its invertebrate homolog Armadillo) is tightly regulated and its steady-state level outside the cadherin-catenin complex is low in the absence of Wingless/Wnt signal. Here we show that the ubiquitin-dependent proteolysis system is involved in the regulation of beta-catenin turnover. beta-catenin, but not E-cadherin, p120(cas) or alpha-catenin, becomes stabilized when proteasome-mediated proteolysis is inhibited and this leads to the accumulation of multi-ubiquitinated forms of beta-catenin. Mutagenesis experiments demonstrate that substitution of the serine residues in the glycogen synthase kinase 3beta (GSK3beta) phosphorylation consensus motif of beta-catenin inhibits ubiquitination and results in stabilization of the protein. This motif in beta-catenin resembles a motif in IkappaB (inhibitor of NFkappaB) which is required for the phosphorylation-dependent degradation of IkappaB via the ubiquitin-proteasome pathway. We show that ubiquitination of beta-catenin is greatly reduced in Wnt-expressing cells, providing the first evidence that the ubiquitin-proteasome degradation pathway may act downstream of GSK3beta in the regulation of beta-catenin.  相似文献   

11.
P21-activated kinase 4 (PAK4) is a Cdc42 effector protein thought to regulate cell adhesion disassembly in a kinase-dependent manner. We found that PAK4 expression is significantly higher in high-grade human breast cancer patient samples, whereas depletion of PAK4 modifies cell adhesion dynamics of breast cancer cells. Surprisingly, systematic analysis of PAK4 functionality revealed that PAK4-driven adhesion turnover is neither dependent on Cdc42 binding nor kinase activity. Rather, reduced expression of PAK4 leads to a concomitant loss of RhoU expression. We report that RhoU is targeted for ubiquitination by the Rab40A–Cullin 5 complex and demonstrate that PAK4 protects RhoU from ubiquitination in a kinase-independent manner. Overexpression of RhoU rescues the PAK4 depletion phenotype, whereas loss of RhoU expression reduces cell adhesion turnover and migration. These data support a new kinase-independent mechanism for PAK4 function, where an important role of PAK4 in cellular adhesions is to stabilize RhoU protein levels. Thus, PAK4 and RhoU cooperate to drive adhesion turnover and promote cell migration.  相似文献   

12.
The Armadillo protein of Drosophila melanogaster is both a structural component of adherens junctions at apical cell membranes and also a key cytoplasmic transducer of the Wingless signalling pathway. We have used the Gal4-UAS system to over-express Armadillo in the Drosophila wing: this hyperactivates the Wingless pathway and leads to the formation of ectopic, supernumerary wing bristles. Here, we report that this adult phenotype is dominantly enhanced by mutations in cdc25(string) and, conversely, is suppressed by co-expression of Cdc25(String). Furthermore, we show that the steady state levels of Armadillo protein produced from the UAS transgene are also sensitive to cdc25(string) dosage in the cells of the larval imaginal wing disc. Consistent with the role of Cdc25(String) in promoting mitosis and with our genetic interaction data, we find a strong correlation between progression through mitosis and a reduction in Armadillo levels. Significantly, this is true whether Armadillo is over-expressed or not, and both cytoplasmic (signalling) and membrane-associated (junctional) Armadillo appears to be affected. We conclude that this phenomenon may reduce the efficacy of Wingless signalling and/or intercellular adhesion during cell division.  相似文献   

13.
Cell-to-extracellular matrix adhesion is regulated by a multitude of pathways initiated distally to the core cell–matrix adhesion machinery, such as via growth factor signaling. In contrast to these extrinsically sourced pathways, we now identify a regulatory pathway that is intrinsic to the core adhesion machinery, providing an internal regulatory feedback loop to fine tune adhesion levels. This autoinhibitory negative feedback loop is initiated by cell adhesion to vitronectin, leading to PAK4 activation, which in turn limits total cell–vitronectin adhesion strength. Specifically, we show that PAK4 is activated by cell attachment to vitronectin as mediated by PAK4 binding partner integrin αvβ5, and that active PAK4 induces accelerated integrin αvβ5 turnover within adhesion complexes. Accelerated integrin turnover is associated with additional PAK4-mediated effects, including inhibited integrin αvβ5 clustering, reduced integrin to F-actin connectivity and perturbed adhesion complex maturation. These specific outcomes are ultimately associated with reduced cell adhesion strength and increased cell motility. We thus demonstrate a novel mechanism deployed by cells to tune cell adhesion levels through the autoinhibitory regulation of integrin adhesion.  相似文献   

14.
Morphological and biochemical analyses have identified a set of proteins which together form a structure known as the adherens junction. Elegant experiments in tissue culture support the idea that adherens junctions play a key role in cell-cell adhesion and in organizing cells into epithelia. During normal embryonic development, cells quickly organize epithelia; these epithelial cells participate in many of the key morphogenetic movements of gastrulation. This prompted the hypothesis that adherens junctions ought to be critical for normal embryonic development. Drosophila Armadillo, the homologue of vertebrate beta-catenin, is a core component of the adherens junction protein complex and has been hypothesized to be essential for adherens junction function in vivo. We have used an intermediate mutant allele of armadillo, armadilloXP33, to test these hypotheses in Drosophila embryos. Adherens junctions cannot assemble in the absence of Armadillo, leading to dramatic defects in cell-cell adhesion. The epithelial cells of the embryo lose adhesion to each other, round up, and apparently become mesenchymal. Mutant cells also lose their normal cell polarity. These disruptions in the integrity of epithelia block the appropriate morphogenetic movements of gastrulation. These results provide the first demonstration of the effect of loss of adherens junctions on Drosophila embryonic development.  相似文献   

15.
In examining the protein kinase components of mitogen-activated protein (MAP) kinase (MAPK) cascades that regulate the c-Jun N-terminal kinase (JNK) in Drosophila S2 cells, we previously found that distinct upstream kinases were involved in responses to sorbitol and lipopolysaccharide. Here we have extended that analysis to the possible MAPK kinase kinase kinases (MAP4Ks) in the JNK pathway. Fray, a putative Drosophila MAP4K, provided a major contribution to JNK activation by sorbitol. To explore the possible link to JNK in mammalian cells, we isolated and characterized OSR1 (oxidative stress-responsive 1), one of two human Fray homologs. OSR1 is a 58-kDa protein of 527 amino acids that is widely expressed in mammalian tissues and cell lines. Of potential regulators surveyed, endogenous OSR1 is activated only by osmotic stresses, notably sorbitol and to a lesser extent NaCl. However, OSR1 did not increase the activity of coexpressed JNK, nor did it activate three other MAPKs, p38, ERK2, and ERK5. A two-hybrid screen implicated another Ste20p family member, the p21-activated protein kinase PAK1, as an OSR1 target. OSR1 phosphorylated threonine 84 in the N-terminal regulatory domain of PAK1. Replacement of threonine 84 with glutamate reduced the activation of PAK1 by an active form of the small G protein Cdc42, suggesting that phosphorylation by OSR1 modulates the G protein sensitivity of PAK isoforms.  相似文献   

16.
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.  相似文献   

17.
PAK4 is a member of the group B family of p21-activated kinases. Its expression is elevated in many cancer cell lines, and activated PAK4 is highly transforming, suggesting that it plays an important role in tumorigenesis. Although most previous work was carried out with overexpressed PAK4, here we used RNA interference to knock down endogenous PAK4 in cancer cells. By studying PAK4 knockdown HeLa cells, we demonstrated that endogenous PAK4 is required for anchorage-independent growth. Because cell survival is a key part of tumorigenesis and anchorage-independent growth, we studied whether PAK4 has a role in protecting cells from cell death. To address this, we studied the role for PAK4 downstream to the tumor necrosis factor (TNF) alpha receptor. Although overexpressed PAK4 was previously shown to abrogate proapoptotic pathways, here we demonstrate that endogenous PAK4 is required for the full activation of prosurvival pathways induced by TNFalpha. Our results indicate that PAK4 is required for optimal binding of the scaffold protein TRADD to the activated TNFalpha receptor through both kinase-dependent and kinase-independent mechanisms. Consequently, activation of several prosurvival pathways, including the NFkappaB and ERK pathways, is reduced in the absence of PAK4. Interestingly, constitutive activation of the NFkappaB and ERK pathways could compensate for the lack of PAK4, indicating that these pathways function downstream to PAK4. The role for PAK4 in regulating prosurvival pathways is a completely new function for this protein, and the connection between PAK4 and cell survival under stress helps explain its role in tumorigenesis and development.  相似文献   

18.
Presenilin is an essential gene for development that when disrupted leads to a neurogenic phenotype that closely resembles Notch loss of function in Drosophila. In humans, many naturally occurring mutations in Presenilin 1 or 2 cause early onset Alzheimer's disease. Both loss of expression and overexpression of Presenilin suggested a role for this protein in the localization of Armadillo/beta-catenin. In blastoderm stage Presenilin mutants, Arm is aberrantly distributed, often in Ubiquitin-immunoreactive cytoplasmic inclusions predominantly located basally in the cell. These inclusions were not observed in loss of function Notch mutants, suggesting that failure to process Notch is not the only consequence of the loss of Presenilin function. Human presenilin 1 expressed in Drosophila produces embryonic phenotypes resembling those associated with mutations in Armadillo and exhibited reduced Armadillo at the plasma membrane that is likely due to retention of Armadillo in a complex with Presenilin. The interaction between Armadillo/beta-catenin and Presenilin 1 requires a third protein which may be delta-catenin. Our results suggest that Presenilin may regulate the delivery of a multiprotein complex that regulates Armadillo trafficking between the adherens junction and the proteasome.  相似文献   

19.
The precise temporal-spatial regulation of the p21-activated serine-threonine kinase PAK at the plasma membrane is required for proper cytoskeletal reorganization and cell motility. However, the mechanism by which PAK localizes to focal adhesions has not yet been elucidated. Indirect binding of PAK to the focal adhesion protein paxillin via the Arf-GAP protein paxillin kinase linker (PKL) and PIX/Cool suggested a mechanism. In this report, we demonstrate an essential role for a paxillin-PKL interaction in the recruitment of activated PAK to focal adhesions. Similar to PAK, expression of activated Cdc42 and Rac1, but not RhoA, stimulated the translocation of PKL from a generally diffuse localization to focal adhesions. Expression of the PAK regulatory domain (PAK1-329) or the autoinhibitory domain (AID 83-149) induced PKL, PIX, and PAK localization to focal adhesions, indicating a role for PAK scaffold activation. We show PIX, but not NCK, binding to PAK is necessary for efficient focal adhesion localization of PAK and PKL, consistent with a PAK-PIX-PKL linkage. Although PAK activation is required, it is not sufficient for localization. The PKL amino terminus, containing the PIX-binding site, but lacking paxillin-binding subdomain 2 (PBS2), was unable to localize to focal adhesions and also abrogated PAK localization. An identical result was obtained after PKLDeltaPBS2 expression. Finally, neither PAK nor PKL was capable of localizing to focal adhesions in cells overexpressing paxillinDeltaLD4, confirming a requirement for this motif in recruitment of the PAK-PIX-PKL complex to focal adhesions. These results suggest a GTP-Cdc42/GTP-Rac triggered multistep activation cascade leading to the stimulation of the adaptor function of PAK, which through interaction with PIX provokes a functional PKL PBS2-paxillin LD4 association and consequent recruitment to focal adhesions. This mechanism is probably critical for the correct subcellular positioning of PAK, thereby influencing the ability of PAK to coordinate cytoskeletal reorganization associated with changes in cell shape and motility.  相似文献   

20.
p21-activated kinases (PAKs) associate with a guanine nucleotide exchange factor, Pak-interacting exchange factor (PIX), which in turn binds the paxillin-associated adaptor GIT1 that targets the complex to focal adhesions. Here, a detailed structure-function analysis of GIT1 reveals how this multidomain adaptor also participates in activation of PAK. Kinase activation does not occur via Cdc42 or Rac1 GTPase binding to PAK. The ability of GIT1 to stimulate alphaPAK autophosphorylation requires the participation of the GIT N-terminal Arf-GAP domain but not Arf-GAP activity and involves phosphorylation of PAK at residues common to Cdc42-mediated activation. Thus, the activation of PAK at adhesion complexes involves a complex interplay between the kinase, Rho GTPases and protein partners that provide localization cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号