首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian p21-activated kinase 1 (Pak1) is a highly conserved effector for the small GTPases Cdc42 and Rac1. In lower eukaryotes, Pak1 homologs are regulated during the cell cycle by phosphorylation. Here, we show that Pak1 is phosphorylated during mitosis in mammalian fibroblasts. This phosphorylation occurs at a single site, Thr 212, within a domain that is unique to Pak1. Cdc2 phosphorylates Pak1 at the identical site in vitro, and inhibition of Cdc2 abolishes Pak1 mitotic phosphorylation in vivo, indicating that Cdc2 is the kinase responsible for phosphorylating Pak1 in mitotic cells. Expression of a Pak1 mutant in which Thr 212 is replaced with a phosphomimic (aspartic acid) has marked effects on the rate and extent of postmitotic spreading of fibroblasts. The mitotic phosphorylation of Pak1 does not alter the basal or Rac-stimulated activity of this kinase, but it does affect the coimmunoprecipitation of at least three proteins with Pak1. These findings are the first to implicate a mammalian Pak in cell cycle regulation and suggest that Pakl, as a result of phosphorylation by Cdc2, alters its association with binding partners and/or substrates that are relevant to the morphologic changes associated with cell division.  相似文献   

2.
3.
The Nf2 tumor suppressor gene product merlin is related to the membrane-cytoskeleton linker proteins of the band 4.1 superfamily, including ezrin, radixin, and moesin (ERMs). Merlin is regulated by phosphorylation in a Rac/cdc42-dependent fashion. We report that the phosphorylation of merlin at serine 518 is induced by the p21-activated kinase PAK2. This is demonstrated by biochemical fractionation, use of active and dominant-negative mutants of PAK2, and immunodepletion. By using wild-type and mutated forms of merlin and phospho-directed antibodies, we show that phosphorylation of merlin at serine 518 leads to dramatic protein relocalization.  相似文献   

4.
Cortactin is an F-actin binding protein that is enriched in dynamic cytoskeletal organelles such as podosomes, membrane ruffles, and lamellipodia. We have shown previously that Src-phosphorylation of cortactin is not required for its translocation to phorbol-ester induced podosomes in A7r5 aortic smooth muscle cells, but may be important for stability and turnover of podosomes. However, little is known of the role of Ser/Thr kinases in the regulation of cortactin. Here, we report that p21-associated kinase (PAK), which plays a crucial role in the formation of podosome and membrane ruffles, is able to phosphorylate cortactin in vitro. The predominant phosphorylation site is located at Ser113 in the first actin-binding repeat. Phosphorylation by PAK is not required for the translocation of cortactin to podosomes, lamellipodia, or membrane ruffles in A7r5 smooth muscle cells. However, binding of cortactin to F-actin is significantly reduced by PAK-phosphorylation. Taken together, these results suggest a role for PAK-phosphorylation of cortactin in the regulation of the dynamics of branched actin filaments in dynamic cytoskeletal organelles.  相似文献   

5.
6.
Lysophosphatidic acid (LPA), one of the naturally occurring phospholipids, stimulates cell motility through the activation of Rho family members, but the signaling mechanisms remain to be elucidated. In the present study, we investigated the roles of p21-activated kinase 1 (PAK1) on LPA-induced focal adhesion kinase (FAK) phosphorylation and cell motility. Treatment of human melanoma cells A2058 with LPA increased phosphorylation and activation of PAK1, which was blocked by treatment with pertussis toxin and by inhibition of phosphoinositide 3-kinase (PI3K) with an inhibitor LY294002 or by overexpression of catalytically inactive mutant of PI3Kgamma, indicating that LPA-induced PAK1 activation was mediated via a Gi protein and the PI3Kgamma signaling pathway. In addition, we demonstrated that Rac1/Cdc42 signals acted as upstream effector molecules of LPA-induced PAK activation. However, Rho-associated kinase, MAP kinase kinase 1/2 or phospholipase C might not be involved in LPA-induced PAK1 activation or cell motility stimulation. Furthermore, PAK1 was necessary for FAK phosphorylation by LPA, which might cause cell migration, as transfection of the kinase deficient mutant of PAK1 or PAK auto-inhibitory domain significantly abrogated LPA-induced FAK phosphorylation. Taken together, these findings strongly indicated that PAK1 activation was necessary for LPA-induced cell motility and FAK phosphorylation that might be mediated by sequential activation of Gi protein, PI3Kgamma and Rac1/Cdc42.  相似文献   

7.
Syndecan-4 modulates focal adhesion kinase phosphorylation   总被引:7,自引:0,他引:7  
The cell-surface heparan sulfate proteoglycan syndecan-4 acts in conjunction with the alpha(5)beta(1) integrin to promote the formation of actin stress fibers and focal adhesions in fibronectin (FN)-adherent cells. Fibroblasts seeded onto the cell-binding domain (CBD) fragment of FN attach but do not fully spread or form focal adhesions. Activation of Rho, with lysophosphatidic acid (LPA), or protein kinase C, using the phorbol ester phorbol 12-myristate 13-acetate, or clustering of syndecan-4 with antibodies directed against its extracellular domain will stimulate formation of focal adhesions and stress fibers in CBD-adherent fibroblasts. The distinct morphological differences between the cells adherent to the CBD and to full-length FN suggest that syndecan-4 may influence the organization of the focal adhesion or the activation state of the proteins that comprise it. FN-null fibroblasts (which express syndecan-4) exhibit reduced phosphorylation of focal adhesion kinase (FAK) tyrosine 397 (Tyr(397)) when adherent to CBD compared with FN-adherent cells. Treating the CBD-adherent fibroblasts with LPA, to activate Rho, or the tyrosine phosphatase inhibitor sodium vanadate increased the level of phosphorylation of Tyr(397) to match that of cells plated on FN. Treatment of the fibroblasts with PMA did not elicit such an effect. To confirm that this regulatory pathway includes syndecan-4 specifically, we examined fibroblasts derived from syndecan-4-null mice. The phosphorylation levels of FAK Tyr(397) were lower in FN-adherent syndecan-4-null fibroblasts compared with syndecan-4-wild type and these levels were rescued by the addition of LPA or re-expression of syndecan-4. These data indicate that syndecan-4 ligation regulates the phosphorylation of FAK Tyr(397) and that this mechanism is dependent on Rho but not protein kinase C activation. In addition, the data suggest that this pathway includes the negative regulation of a protein-tyrosine phosphatase. Our results implicate syndecan-4 activation in a direct role in focal adhesion regulation.  相似文献   

8.
The serine/threonine p21-activated kinase (PAK) is an effector for Rac and Cdc42, but its role in regulating cytoskeletal organization has been controversial. To address this issue, we investigated the role of PAK in migration of microvascular endothelial cells. We found that a dominant negative (DN) mutant of PAK significantly inhibited cell migration and increased stress fibers and focal adhesions. The DN effect mapped to the most NH(2)-terminal proline-rich SH3-binding sequence. Observation of a green fluorescent protein-tagged alpha-actinin construct in living cells revealed that the DN construct had no effect on membrane ruffling, but dramatically inhibited stress fiber and focal contact motility and turnover. Constitutively active PAK inhibited migration equally well and also increased stress fibers and focal adhesions, but had a somewhat weaker effect on their dynamics. In contrast to their similar effects on motility, DN PAK decreased cell contractility, whereas active PAK increased contractility. Active PAK also increased myosin light chain (MLC) phosphorylation, as indicated by staining with an antibody to phosphorylated MLC, whereas DN PAK had little effect, despite the increase in actin stress fibers. These results demonstrate that although PAK is not required for extension of lamellipodia, it has substantial effects on cell adhesion and contraction. These data suggest a model in which PAK plays a role coordinating the formation of new adhesions at the leading edge with contraction and detachment at the trailing edge.  相似文献   

9.
The p21-activated kinases (PAKs) contain an N-terminal Cdc42/Rac interactive binding domain, which in the group 1 PAKs (PAK1, 2, and 3) regulates the activity of an adjacent conserved autoinhibitory domain. In contrast, the group 2 PAKs (PAK4, 5, and 6) lack this autoinhibitory domain and are not activated by Cdc42/Rac binding, and the mechanisms that regulate their kinase activity have been unclear. This study found that basal PAK6 kinase activity was repressed by a p38 mitogen-activated protein (MAP) kinase antagonist and could be strongly stimulated by constitutively active MAP kinase kinase 6 (MKK6), an upstream activator of p38 MAP kinases. Mutation of a consensus p38 MAP kinase target site at serine 165 decreased PAK6 kinase activity. Moreover, PAK6 was directly activated by MKK6, and mutation of tyrosine 566 in a consensus MKK6 site (threonine-proline-tyrosine, TPY) in the activation loop of the PAK6 kinase domain prevented activation by MKK6. PAK6 activation by MKK6 was also blocked by mutation of an autophosphorylated serine (serine 560) in the PAK6 activation loop, indicating that phosphorylation of this site is necessary for MKK6-mediated activation. PAK4 and PAK5 were similarly activated by MKK6, consistent with a conserved TPY motif in their activation domains. The activation of PAK6 by both p38 MAP kinase and MKK6 suggests that PAK6 plays a role in the cellular response to stress-related signals.  相似文献   

10.
The accessory human immunodeficiency virus type 1 (HIV-1) protein Nef activates the autophosphorylation activity of p21-activated kinase 2 (PAK2). Merlin, a cellular substrate of PAK2, is homologous to the ezrin-radixin-moesin family and plays a critical role in Rac signaling. To assess the possible impact on host cell metabolism of Nef-induced PAK2 activation, we investigated the phosphorylation of merlin in Nef expressing cells. Here we report that Nef induces merlin phosphorylation in multiple cell lines independently of protein kinase A. This intracellular phosphorylation of merlin directly correlates with in vitro assay of the autophosphorylation activity of Nef-activated PAK2. Importantly, merlin phosphorylation induced by Nef was also observed in human primary T cells. The finding that Nef induces phosphorylation of the key signaling molecule merlin suggests several possible roles for PAK2 activation in HIV pathogenesis.  相似文献   

11.
p21-activated kinases (Pak)/Ste20 kinases are regulated in vitro and in vivo by the small GTP-binding proteins Rac and Cdc42 and lipids, such as sphingosine, which stimulate autophosphorylation and phosphorylation of exogenous substrates. The mechanism of Pak activation by these agents remains unclear. We investigated Pak kinase activation in more detail to gain insight into the interplay between the GTPase/sphingosine binding, an intramolecular inhibitory interaction, and autophosphorylation. We present biochemical evidence that an autoinhibitory domain (ID) contained within amino acid residues 67-150 of Pak1 interacts with the carboxyl-terminal kinase domain and that this interaction is regulated in a GTPase-dependent fashion. Cdc42- and sphingosine-stimulated Pak1 activity can be inhibited in trans by recombinant ID peptide, indicating similarities in their mode of activation. However, Pak1, which was autophosphorylated in response to either GTPase or sphingosine, is highly active and is insensitive to inhibition by the ID peptide. We identified phospho-acceptor site threonine 423 in the kinase activation loop as a critical determinant for the sensitivity to autoinhibition and enzymatic activity. Phosphorylation studies suggested that the stimulatory effect of both GTPase and sphingosine results in exposure of the activation loop, making it accessible for intermolecular phosphorylation.  相似文献   

12.
Phosphorylation and spatial reorganization of the vimentin network have been implicated in mediating smooth muscle contraction, cell migration, and mitosis. In this study, stimulation of cultured smooth muscle cells with 5-hydroxytryptamine (5-HT) induced PAK1 phosphorylation at Thr-423 (an indication of p21-activated kinase (PAK) activation). Treatment with PAK led to disassembly of wild-type (but not mutant S56A) vimentin filaments as assessed by an in vitro filament assembly assay. Furthermore, stimulation with 5-HT resulted in the dissociation of Crk-associated substrate (CAS; an adapter protein associated with smooth muscle force development) from cytoskeletal vimentin. Expression of mutant S56A vimentin in cells inhibited the increase in phosphorylation at Ser-56 and in the ratios of soluble to insoluble vimentin (an index of vimentin disassembly) and the dissociation of CAS from cytoskeletal vimentin in response to 5-HT activation compared with cells expressing wild-type vimentin. Because CAS may be involved in PAK activation, PAK phosphorylation was evaluated in cells expressing the S56A mutant. Expression of mutant S56A vimentin depressed PAK phosphorylation at Thr-423 induced by 5-HT. Expression of the S56A mutant also inhibited the spatial reorientation of vimentin filaments in cells in response to 5-HT stimulation. Our results suggest that vimentin phosphorylation at Ser-56 may inversely regulate PAK activation possibly via the increase in the amount of soluble CAS upon agonist stimulation of smooth muscle cells. Additionally, vimentin phosphorylation at this position is critical for vimentin filament spatial rearrangement elicited by agonists.  相似文献   

13.
目的探索神经细胞粘附分子(NCAM)促进神经突生长的分子机制。方法对新生小鼠脑组织行免疫共沉淀以筛选NCAM的结合伴侣。向体外培养的海马神经元中加入免疫共沉淀的阳性筛选分子的抑制剂,观察其对NCAM促进神经突生长作用的影响。提取新生小鼠脑内生长锥以及脂筏,检测NCAM、NCAM的结合伴侣及其上、下游分子在小鼠脑内的空间分布。结果免疫共沉淀发现P21活化激酶1(Pak1)为NCAM的结合伴侣,Pak1抑制剂可以阻断NCAM促进神经突生长的作用。对小鼠脑内脂筏的研究发现NCAM和Pak1上游激活物Pak相互作用交换因子(PIX)、细胞分裂周期蛋白42(Cdc42)在生长锥脂筏上富集,提示NCAM与Pak1的结合以及Pak1的活化可能在脂筏上完成。结论 NCAM通过Pak1途径促进神经突生长,且这一作用的实现可能依赖于脂筏。  相似文献   

14.
Phosphorylation of myosin II regulatory light chains (RLC) by Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) is a critical step in the initiation of smooth muscle and non-muscle cell contraction. Post-translational modifications to MLCK down-regulate enzyme activity, suppressing RLC phosphorylation, myosin II activation, and tension development. Here we report that PAK2, a member of the Rho family of GTPase-dependent kinases, regulates isometric tension development and myosin II RLC phosphorylation in saponin permeabilized endothelial monolayers. PAK2 blunts tension development by 75% while inhibiting diphosphorylation of myosin II RLC. Cdc42-activated placenta and recombinant, constitutively active PAK2 phosphorylate MLCK in vitro with a stoichiometry of 1.71 +/- 0. 21 mol of PO(4)/mol of MLCK. This phosphorylation inhibits MLCK phosphorylation of myosin II RLC. PAK2 catalyzes MLCK phosphorylation on serine residues 439 and 991. Binding calmodulin to MLCK blocks phosphorylation of Ser-991 by PAK2. These results demonstrate that PAK2 can directly phosphorylate MLCK, inhibiting its activity and limiting the development of isometric tension.  相似文献   

15.
Nearly all processes in cells are regulated by the coordinated interplay between reversible protein phosphorylation and dephosphorylation. Therefore, it is a great challenge to identify all phosphorylation substrates of a single protein kinase to understand its integration into intracellular signaling networks. In this work, we developed an assay that holds promise as being useful for the identification of phosphorylation substrates of a given protein kinase of interest. The method relies on irreversible inhibition of endogenous kinase activities with the ATP analogue 5'-fluorosulfonylbenzoyladenosine (5'FSBA). 5'FSBA-treated cell extracts are then combined with a purified activated kinase to allow phosphorylation of putative substrate proteins, followed by a two-step purification protocol and identification by fingerprint mass spectrometry. Specifically, we applied this method to identify new phosphorylation substrates of the Drosophila p21-activated kinase (PAK) protein Mbt. Among candidate proteins identified by mass spectrometry, the dynactin complex subunit dynamitin was verified as a bona fide Mbt phosphorylation substrate and interaction partner, suggesting an involvement of this PAK protein in the regulation of dynactin-dependent cellular processes.  相似文献   

16.
The Nef protein of primate immunodeficiency viruses plays an important role in the pathogenesis of acquired immunodeficiency syndrome (AIDS) [1] [2]. The interaction of Nef with the Nef-associated kinase (NAK) is one of the most conserved properties of different human and simian immunodeficiency virus (HIV and SIV) Nef alleles. The role of NAK association is currently not known but it has been implicated in enhanced viral infectivity in cell culture and in disease progression in SIV-infected macaques [3]. Previous studies have indicated that NAK shares many features with the p21-activated kinases (PAKs) [3], but the molecular identity of NAK has remained unknown. We have generated specific antisera against PAKs 1-3, and expressed these kinases individually as epitope-tagged proteins. By using these reagents in experiments involving partial proteolytic mapping, and exploiting the unique ability of PAK2 to serve as a caspase substrate, we have positively identified NAK as PAK2. Interestingly, although ectopic PAK2 overexpression efficiently replaced endogenous PAK2 from the complex with Nef, the total Nef-associated PAK2 activity was not increased, indicating the abundance of another cellular factor(s) as the limiting factor in Nef-PAK2 complex formation. Identification of NAK as PAK2 should now facilitate elucidation of its role as a mediator of the pathogenic effects of Nef.  相似文献   

17.
Activation of the canonical mitogen-activated protein kinase (MAPK) cascade by soluble mitogens is blocked in non-adherent cells. It is also blocked in cells in which the cAMP-dependent protein kinase (PKA) is activated. Here we show that inhibition of PKA allows anchorage-independent stimulation of the MAPK cascade by growth factors. This effect is transient, and its duration correlates with sustained tyrosine phosphorylation of paxillin and focal-adhesion kinase (FAK) in non-adherent cells. The effect is sensitive to cytochalasin D, implicating the actin cytoskeleton as an important factor in mediating this anchorage-independent signalling. Interestingly, constitutively active p21-activated kinase (PAK) also allows anchorage-independent MAPK signalling. Furthermore, PKA negatively regulates PAK in vivo, and whereas the induction of anchorage-independent signaling resulting from PKA suppression is blocked by dominant negative PAK, it is markedly prolonged by constitutively active PAK. These observations indicate that PKA and PAK are important regulators of anchorage-dependent signal transduction.  相似文献   

18.
ABSTRACT: BACKGROUND: p21-activated kinase (PAK) has been implicated in the inflammatory activation of endothelial cells by disturbed fluid shear stress, which is the initiating stimulus in atherosclerosis. The study addresses whether PAK1 contributes to inflammatory marker expression in endothelial cells at atherosclerosis-susceptible regions of arteries in vivo. METHOD: Aortas from WT and PAK1-/- C57BL/6J mice on a normal chow diet were fixed, dissected and processed for immunohistochemistry using a panel of inflammatory markers. We visualized and quantified staining in the endothelium at the greater and lesser curvatures of the arch of aorta, as atherosclerosis-resistant and susceptible regions, respectively. RESULTS: Fibronectin, VCAM-1 and the activated RelA NF-kappaB subunit were localized to the lesser curvature and decreased in PAK1-/- mice. The activated RelB NF-kappaB subunit was also localized to the lesser curvature but was increased in PAK1-/- mice. Low levels of staining for ICAM-1 and the monocyte/macrophage marker Mac2 indicated that overall inflammation in this tissue was minimal. CONCLUSION: These data show that PAK1 has a significant pro-inflammatory function at atherosclerosisprone sites in vivo. These effects are seen in young mice with very low levels of inflammation, suggesting that inflammatory activation of the endothelium is primarily biomechanical. Activation involves NF-kappaB, expression of leukocyte recruitment receptors and fibronectin deposition. These results support and extend in vitro studies demonstrating that PAK contributes to activation of inflammatory pathways in endothelial cells by fluid shear stress.  相似文献   

19.
Activation of the mitotic checkpoint by chemotherapeutic drugs such as taxol causes mammalian cells to arrest in mitosis and then undergo apoptosis. However, the biochemical basis of chemotherapeutic drug-induced cell death is unclear. Herein, we provide new evidence that both cell survival and cell death-signaling pathways are concomitantly activated during mitotic arrest by microtubule-interfering drugs. Treatment of HeLa cells with chemotherapeutic drugs activated both p38 mitogen-activated protein kinase (MAPK) and p21-activated kinase (PAK). p38 MAPK was necessary for chemotherapeutic drug-induced cell death because the p38 MAPK inhibitors SB203580 or SB202190 suppressed cell death. Dominant-active MKK6, a direct activator of p38 MAPK, also induced cell death by stimulating translocation of Bax from the cytosol to the mitochondria in a p38 MAPK-dependent manner. Dominant active PAK suppressed this MKK6-induced cell death. PAK seems to mediate cell survival by phosphorylating Bad, and inhibition of PAK in mitotically arrested cells reduced Bad phosphorylation and increased apoptosis. Our results suggest that therapeutic strategies that suppress PAK-mediated survival signals may improve the efficacy of current cancer chemotherapies by enhancing p38 MAPK-mediated cell death.  相似文献   

20.
p21-activated kinases (PAKs) associate with a guanine nucleotide exchange factor, Pak-interacting exchange factor (PIX), which in turn binds the paxillin-associated adaptor GIT1 that targets the complex to focal adhesions. Here, a detailed structure-function analysis of GIT1 reveals how this multidomain adaptor also participates in activation of PAK. Kinase activation does not occur via Cdc42 or Rac1 GTPase binding to PAK. The ability of GIT1 to stimulate alphaPAK autophosphorylation requires the participation of the GIT N-terminal Arf-GAP domain but not Arf-GAP activity and involves phosphorylation of PAK at residues common to Cdc42-mediated activation. Thus, the activation of PAK at adhesion complexes involves a complex interplay between the kinase, Rho GTPases and protein partners that provide localization cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号