首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factors (FGFs) mediate essential cellular functions by activating one of four alternatively spliced FGF receptors (FGFRs). To determine the mechanism regulating ligand binding affinity and specificity, soluble FGFR1 and FGFR3 binding domains were compared for activity. FGFR1 bound well to FGF2 but poorly to FGF8 and FGF9. In contrast, FGFR3 bound well to FGF8 and FGF9 but poorly to FGF2. The differential ligand binding specificity of these two receptors was exploited to map specific ligand binding regions in mutant and chimeric receptor molecules. Deletion of immunoglobulin-like (Ig) domain I did not effect ligand binding, thus localizing the binding region(s) to the distal two Ig domains. Mapping studies identified two regions that contribute to FGF binding. Additionally, FGF2 binding showed positive cooperativity, suggesting the presence of two binding sites on a single FGFR or two interacting sites on an FGFR dimer. Analysis of FGF8 and FGF9 binding to chimeric receptors showed that a broad region spanning Ig domain II and sequences further N-terminal determines binding specificity for these ligands. These data demonstrate that multiple regions of the FGFR regulate ligand binding specificity and that these regions are distinct with respect to different members of the FGF family.  相似文献   

2.
Identification of a new fibroblast growth factor receptor, FGFR5.   总被引:9,自引:0,他引:9  
  相似文献   

3.
4.
5.
Fibroblast growth factors (FGFs) mediate a multitude of physiological and pathological processes by activating a family of tyrosine kinase receptors (FGFRs). Each FGFR binds to a unique subset of FGFs and ligand binding specificity is essential in regulating FGF activity. FGF-7 recognizes one FGFR isoform known as the FGFR2 IIIb isoform or keratinocyte growth factor receptor (KGFR), whereas FGF-2 binds well to FGFR1, FGFR2, and FGFR4 but interacts poorly with KGFR. Previously, mutations in FGF-2 identified a set of residues that are important for high affinity receptor binding, known as the primary receptor-binding site. FGF-7 contains this primary site as well as a region that restricts interaction with FGFR1. The sequences that confer on FGF-7 its specific binding to KGFR have not been identified. By utilizing domain swapping and site-directed mutagenesis we have found that the loop connecting the beta4-beta5 strands of FGF-7 contributes to high affinity receptor binding and is critical for KGFR recognition. Replacement of this loop with the homologous loop from FGF-2 dramatically reduced both the affinity of FGF-7 for KGFR and its biological potency but did not result in the ability to bind FGFR1. Point mutations in residues comprising this loop of FGF-7 reduced both binding affinity and biological potency. The reciprocal loop replacement mutant (FGF2-L4/7) retained FGF-2 like affinity for FGFR1 and for KGFR. Our results show that topologically similar regions in these two FGFs have different roles in regulating receptor binding specificity and suggest that specificity may require the concerted action of distinct regions of an FGF.  相似文献   

6.
7.
Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1–3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the “universal FGFR ligand” because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the “b” and “c” splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs.  相似文献   

8.
Fibroblast growth factors and their receptors in the central nervous system   总被引:22,自引:0,他引:22  
Fibroblast growth factors (FGFs) and their receptors constitute an elaborate signaling system that participates in many developmental and repair processes of virtually all mammalian tissues. Among the 23 FGF members, ten have been identified in the brain. Four FGF receptors (FGFRs), receptor tyrosine kinases, are known so far. Ligand binding of these receptors greatly depends on the presence of heparan sulfate proteoglycans, which act as low affinity FGFRs. Ligand binding specificity of FGFRs depends on the third extracellular Ig-like domain, which is subject to alternative splicing. Activation of FGFRs triggers several intracellular signaling cascades. These include phosphorylation of src and PLC leading finally to activation of PKC, as well as activation of Crk and Shc. SNT/FRS2 serves as an alternative link of FGFRs to the activation of PKC and, in addition, activates the Ras signaling cascade. In the CNS, FGFs are widely expressed; FGF-2 is predominantly synthesized by astrocytes, whereas other FGF family members, e.g., FGF-5, FGF-8, and FGF-9, are primarily synthesized by neurons. During CNS development FGFs play important roles in neurogenesis, axon growth, and differentiation. In addition, FGFs are major determinants of neuronal survival both during development and during adulthood. Adult neurogenesis depends greatly on FGF-2. Finally, FGF-1 and FGF-2 seem to be involved in the regulation of synaptic plasticity and processes attributed to learning and memory.  相似文献   

9.
Kim I  Moon S  Yu K  Kim U  Koh GY 《Biochimica et biophysica acta》2001,1518(1-2):152-156
Using the polymerase chain reaction on human embryonic cDNAs, we isolated a cDNA encoding a novel 504 amino acid protein, termed fibroblast growth factor receptor (FGFR)-5, which is highly homologous to known FGFRs. The NH(2)-terminal portion of FGFR5 contains a putative secretory signal sequence, three typical immunoglobulin-like domains, six cysteines, and an acidic box, but no HAV motif. The COOH-terminal portion of FGFR5 contains one transmembrane domain but no intracellular kinase domain. Recombinant FGFR5 expressed in COS-7 cells is not secreted, but recombinant truncated FGFR5 lacking the predicted transmembrane domain is secreted. Acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) do not bind to FGFR5. Among 23 adult human tissues, FGFR5 mRNA is preferentially expressed in the pancreas. These results suggest that FGFR5 may provide a binding site for some other fibroblast growth factors and may regulate some pancreatic function.  相似文献   

10.
11.
Using the cytoplasmic domain of fibroblast growth factor receptor 1 (FGFR1) as bait in a yeast two-hybrid screen, Grb14 was identified as a FGFR1 binding partner. A kinase-inactive mutant of FGFR1 failed to interact with Grb14, indicating that activation of FGFR1 is necessary for binding. Deletion of the C-tail or mutation of both C-tail tyrosine residues of FGFR1 to phenylalanine abolished binding, and deletion of the juxtamembrane domain of the receptor reduced binding, suggesting that Grb14 binds to FGFR1 at multiple sites. Co-immunoprecipitation and in vitro binding assays demonstrated that binding of Grb14 to FGFR1 in mammalian cells was dependent on receptor activation by fibroblast growth factor-2 (FGF-2). Deletion of the Src homology 2 (SH2) domain of Grb14 reduced but did not block binding to FGFR1 and eliminated dependence on receptor activation. The SH2 domain alone bound both FGFR1 and platelet-derived growth factor receptor, whereas full-length Grb14 bound only FGFR1, suggesting that regions upstream of the SH2 domain confer specificity for FGFR1. Grb14 was phosphorylated on serine and threonine residues in unstimulated cells, and treatment with FGF-2 enhanced this phosphorylation. Expression of exogenous Grb14 inhibited FGF-2-induced cell proliferation, whereas a point-mutated form of Grb14 incapable of binding to FGFR1 enhanced FGF-2-induced mitogenesis. These data demonstrate an interaction between activated FGFR1 and Grb14 and suggest a role for Grb14 in FGF signaling.  相似文献   

12.
13.
The fibroblast growth factor (FGF) family plays a key role in a multitude of physiological and pathological processes. The activities of FGFs are mediated by a family of tyrosine kinase receptors, designated FGFRs. The mechanism by which FGFs induce receptor activation is controversial. Despite their structural similarity, FGFs display distinct receptor binding characteristics and cell type specificity. Previous studies with FGF-2 identified a low affinity receptor binding site that is located within a loop connecting its 9th and 10th beta-strands. The corresponding residues in the other family members are highly variable, and it was proposed that the variability might confer on FGFs unique receptor binding characteristics. We studied the role of this loop in FGF-7 by both site-directed mutagenesis and loop replacement. Unlike the other members of the FGF family, FGF-7 recognizes only one FGFR isoform and is, therefore, ideal for studies of how the specificity in the FGF-FGFR interaction is conferred at the structural level. Point mutations in the loop of FGF-7 did not change receptor binding affinity but resulted in reduced mitogenic potency and reduced ability to induce receptor-mediated phosphorylation events. These results suggest that the loop of FGF-7 fulfills the role of low affinity binding site required for receptor activation. The observation that it is possible to uncouple FGF-7 receptor binding and biological activity favors a bivalent model for FGFR dimerization, and it may be clinically relevant to the design of FGF-7 antagonists. Reciprocal loop replacement between FGF-7 and FGF-2 had no effect on their known receptor binding affinities nor did it alter their known specificity in eliciting a mitogenic response. In conclusion, these results suggest that, despite the diversity in the loop structure of FGF-2 and FGF-7, the loop has a similar function in both growth factors.  相似文献   

14.
A truncated form of the type 1 fibroblast growth factor receptor (FGFR1) lacking most of its cytoplasmic domain was tested for its ability to inhibit signal transduction by each of three different wild-type FGFRs (FGFR1, 2, and 3). When the truncated FGFR1 was expressed in Xenopus oocytes in excess of each wild-type FGFR, mobilization of intracellular calcium mediated by the wild-type FGFRs was completely blocked. The truncated FGFR did not inhibit signal transduction by the co-expressed platelet-derived growth factor beta-receptor. A form of truncated FGFR1 which lacked the first immunoglobulin-like domain also inhibited signal transduction by wild-type FGFRs. Truncated FGFR formed complexes with wild-type FGFR in the presence of basic FGF in intact cells. These observations were consistent with the hypothesis that the truncated FGFR interacted with wild-type FGFRs to form nonfunctional heterodimers, thus eliminating the signaling by the wild-type FGFRs. The observation that signaling by multiple types of FGFR can be blocked by a single type of truncated FGFR suggests that the different types of FGFR can interact with each other in ligand-mediated complexes. These findings provide a molecular basis for inhibiting the actions of FGFs in vivo.  相似文献   

15.
To elucidate the structural determinants governing specificity in fibroblast growth factor (FGF) signaling, we have determined the crystal structures of FGF1 and FGF2 complexed with the ligand binding domains (immunoglobulin-like domains 2 [D2] and 3 [D3]) of FGF receptor 1 (FGFR1) and FGFR2, respectively. Highly conserved FGF-D2 and FGF-linker (between D2-D3) interfaces define a general binding site for all FGF-FGFR complexes. Specificity is achieved through interactions between the N-terminal and central regions of FGFs and two loop regions in D3 that are subject to alternative splicing. These structures provide a molecular basis for FGF1 as a universal FGFR ligand and for modulation of FGF-FGFR specificity through primary sequence variations and alternative splicing.  相似文献   

16.
Heparan sulfates (HS) play an important role in the control of cell growth and differentiation by virtue of their ability to modulate the activities of heparin-binding growth factors, an issue that is particularly well studied for fibroblast growth factors (FGFs). HS/heparin co-ordinate the interaction of FGFs with their receptors (FGFRs) and are thought to play a critical role in receptor dimerization. Biochemical and crystallographic studies, conducted mainly with FGF-2 or FGF-1 and FGF receptors 1 and 2, suggests that an octasaccharide is the minimal length required for FGF- and FGFR-induced dimerization and subsequent activation. In addition, 6-O-sulfate groups are thought to be essential for binding of HS to FGFR and for receptor dimerization. We show here that oligosaccharides shorter than 8 sugar units support activation of FGFR2 IIIb by FGF-1 and interaction of FGFR4 with FGF-1. In contrast, only relatively long oligosaccharides supported receptor binding and activation in the FGF-1.FGFR1 or FGF-7.FGFR2 IIIb setting. In addition, both 6-O- and 2-O-desulfated heparin activated FGF-1 signaling via FGFR2 IIIb, whereas neither one stimulated FGF-1 signaling via FGFR1 or FGF-7 via FGFR2 IIIb. These findings indicate that the structure of HS required for activating FGFs is dictated by the specific FGF and FGFR combination. These different requirements may reflect the differences in the mode by which a given FGFR interacts with the various FGFs.  相似文献   

17.
Chen F  Hristova K 《Biochemistry》2011,50(40):8576-8582
Fibroblast growth factors (fgfs) play important roles in embryonic development and in adult life by controlling cell proliferation, differentiation, and migration. There are 18 known fgfs which activate four fibroblast growth factor receptors (FGFRs), with different isoforms due to alternative splicing. The physical basis behind the specificity of the biological responses mediated by different fgf-FGFR pairs is currently unknown. To gain insight into the specificity of FGFR3c, a membrane receptor which is critical for bone development, we studied, analyzed, and compared the activation of FGFR3c over a wide range of fgf1 and fgf2 concentrations. We found that while the strength of fgf2 binding to FGFR3c is lower than the strength of fgf1 binding, the fgf2-bound dimers exhibit higher phosphorylation of the critical tyrosines in the activation loop. As a result, fgf1 and fgf2 elicit a similar FGFR3c response at low, but not at high, concentrations. The results demonstrate the versatility of FGFR3c response to fgf1 and fgf2 and highlight the complexity in fgf signaling.  相似文献   

18.
19.
20.
The fibroblast growth factor receptor 2 (FGFR2) gene is expressed as alternatively spliced mRNAs that encode bacterially expressed kinase, the keratinocyte growth factor receptor, or K-sam. We have now isolated a novel FGFR2 cDNA that is identical with the previously cloned human bacterially expressed kinase, except in the third immunoglobulin-like domain. The ligand binding properties of FGFR2 were studied by expressing the protein in rat L6 muscle myoblasts. Unlike human bacterially expressed kinase which binds acidic and basic FGF with similar affinities, FGFR2 bound acidic FGF with approximately 1000-fold higher affinity than basic FGF. These results indicate that alternative splicing of the FGFR2 gene in the region encoding the carboxyl-terminal half of the third immunoglobulin domain determines the ligand specificity of this group of receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号