首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
While the factors influencing reproduction and survival in colonial populations are relatively well studied, factors involved in dispersal and settlement decisions are not well understood. The present study investigated exchanges of great cormorants Phalacrocorax carbo sinensis among six breeding colonies over a 13‐year period when the breeding population in Denmark increased from 2800 to 36 400 nests. We used a multistate capture‐recapture model that combined multisite resightings and recoveries to examine simultaneously recruitment, natal dispersal, breeding dispersal and annual survival of first‐year, immature and breeding great cormorants. Mean survival of first‐year birds (0.50±0.09, range=0.42–0.66 among colonies) was lower than survival of breeders (0.90±0.06, range=0.81–0.97). Mean survival of immature birds over the study period was 0.87±0.08. Dispersal from a colony increased with decreasing mean brood size in the colony in both first‐time and experienced breeders. The choice of the settlement colony in first‐time breeders was affected by conditions in the natal colony and in the colonies prospected during the pre‐breeding years. In particular, first‐time breeders recruited to colonies where they could expect better breeding success. Experienced breeders relied mainly on cues present early in the season and on their own breeding experience to choose a new breeding colony. Newly established colonies resulted mainly from the immigration of first‐time breeders originating from denser colonies. Dispersal was distance‐dependent and first‐time breeders dispersed longer distances than breeders. We suggest that the prospecting behaviour allows first‐time breeders to recruit in nearby as well as more distant potential breeding colonies. Dispersing breeders preferred to settle in neighbouring colonies likely to benefit from their experience with foraging areas. We discuss the importance of these movements for growth and expansion of the breeding population.  相似文献   

3.
Rendering developmental and ecological processes into macroevolutionary events and trends has proved to be a difficult undertaking, not least because processes and outcomes occur at different scales. Here we attempt to integrate comparative analyses that bear on this problem, drawing from a system that has seldom been used in this way: the co-occurrence of alternate phenotypes within genetic individuals, and repeated evolution of distinct categories of these phenotypes. In cheilostome bryozoans, zooid polymorphs (avicularia) and some skeletal structures (several frontal shield types and brood chambers) that evolved from polymorphs have arisen convergently at different times in evolutionary history, apparently reflecting evolvability inherent in modular organization of their colonial bodies. We suggest that division of labor evident in the morphology and functional capacity of polymorphs and other structural modules likely evolved, at least in part, in response to the persistent, diffuse selective influence of predation by small motile invertebrate epibionts.  相似文献   

4.
Two hypotheses have been proposed to link population regulation to density‐dependent changes in demographical parameters: the habitat heterogeneity hypothesis (HHH) states that, as population density rises, an increasing proportion of individuals are forced to occupy low‐quality territories, which provokes a decline in average per‐capita survival and/or productivity although some individuals show no decline in fecundity; and the individual adjustment hypothesis (IAH), which suggests that increased densities lead to reductions in survival and/or fecundity by enhancing agonistic interactions, which affect all individuals to a similar extent. However, density‐dependent effects can be affected by density‐independent factors (DIF), such as weather. We test the effects of density dependence on annual reproductive success in Griffon Vultures Gyps fulvus at four spatial scales, nest‐site, cliff, colony and metacolony, in northern Spain from 2008 to 2015. Our results showed most support for the HHH at all scales. At the colony and cliff scale, IAH and DIF had similar importance, whereas there was little evidence of IAH at the metacolony and the nest scale. The best protected eyries (caves, potholes and sheltered ledges) produced the most fledglings and were used preferentially, whereas low‐quality eyries (exposed ledges or open crevices) were used only when the number of breeders increased. The significant interaction between breeding failure and density found for the more exposed eyries suggests that at higher densities, breeding pairs are forced to use poorer nesting areas, and the negative effect of density at the cliff scale could be due to the combined effect of a higher proportion of pairs using low‐quality eyries and the negative effect of rainfall.  相似文献   

5.
When total cell number is used as the basic parameter of growth, rational equations which describe colonial and organism growth under varying circumstances have been derived from a single differential form. These equations result from making specific, but reasonable assumptions about two additive factors, ϕ and θ which determine community growth. The first factor (ϕ) is assumed to arise from conditions within the growing cell itself, while the second factor (θ) arises from interactions between the growing cells of the community. If it is further assumed that the cells of a community are homogeneous with respect to density and volume, it has been shown that the mathematical expressions commonly used to describe growth data may be rationally derived from the general form. Clerical assistance in the preparation of these materials was furnished by the personnel of Work Projects Administration, Official Project No. 65-1-08-62, Unit A-8.  相似文献   

6.
Kinship plays a significant role in shaping the social and geneticstructures of many vertebrate populations. Evidence of kinship,however, may be substantially influenced by the spatial andtemporal scales over which co-ancestry is monitored. For example,while data on social group composition may yield little indicationof relatedness among reproductive partners, data on the demographicstructure of a population may reveal considerable shared ancestryamong mates. We explored relationships among social group composition,individual movements, and population-level patterns of kinshipusing data from a 7-year field study of the colonial tuco-tuco(Ctenomys sociabilis), a group-living subterranean rodent thatis endemic to southwestern Argentina. Our analyses indicatethat social groups are composed of 1–4 generations ofclosely related females and a single, immigrant male, suggestingthat reproductive partners are not related to one another. Monitoringindividual movements, however, revealed that (1) most male dispersaloccurs within the local population and (2) most new social groupsare founded by females born in the study population, indicatingthat individuals reared in different burrow systems may shareconsiderable co-ancestry. Simulation analyses revealed thatup to 67% of reproductive partnerships consist of animals thatshare co-ancestry within the last 5–7 generations. Thus,while analyses of social group composition provide little evidenceof kinship among reproductive partners, population-level analysesof dispersal and group formation suggest that co-ancestry amongmates is common. These findings have important implicationsfor interpreting social interactions and genetic structure inthis species.  相似文献   

7.
8.
Growth and shaping in colonial hydroids (Hydrozoa, Cnidaria) are realized due to the functioning of special colony elements, growing tips located at the terminuses of branched colony body. Unlike in plants, the growing tips of colonial hydroids are sites of active cell movements related to morphogenesis and lacking proliferation. The activity of hydroid growing tips is expressed as growth pulsations: cyclic repetitions of their apex extensions and retractions. The parameters of growth pulsations are species specific and related to the shape of a forming element. Here, the succession of cell movements and changes in mutual arrangement within the growing tip are described in detail at all pulsation phases. The role of the inner cell layer in the tip activity was demonstrated for the first time. Relationships between the growing tip parameters, length and diameter, and pulsations are discussed. A scheme is proposed for cyclic processes in both epithelial layers. An explanation is provided for the two-step mode of growth pulsations with relative independence of the main phases. It was proposed that successive activities of the tip ecto-and endoderm serve as driving forces provided there is a hard outer skeleton. This scheme makes it possible to explain some patterns of growth and morphogenesis in colonial hydroids, such as gradually increasing growth rate of a new tip and its maximum growth rate, differences in the parameters of growth pulsations between shoot and stolon tips, shoot base inclination towards the stolon tip, etc., and provides a basis for further improvement of the model of morphogenesis in hydroids.  相似文献   

9.
Kosevich IA 《Ontogenez》2006,37(2):115-129
Growth and shaping in colonial hydroids (Hydrozoa, Cnidaria) are realized due to the functioning of special colony elements, growing tips located at the terminuses of branched colony body. Unlike in plants, the growing tips of colonial hydroids are sites of active cell movements related to morphogenesis and lacking proliferation. The activity of hydroid growing tips is expressed as growth pulsations: cyclic repetitions of their apex extensions and retractions. The parameters of growth pulsations are species specific and related to the shape of a forming element. Here, the succession of cell movements and changes in mutual arrangement within the growing tip are described in detail at all pulsation phases. The role of the inner cell layer in the tip activity was demonstrated for the first time. Relationships between the growing tip parameters, length and diameter, and pulsations are discussed. A scheme is proposed for cyclic processes in both epithelial layers. An explanation is provided for the two-step mode of growth pulsations with relative independence of the main phases. It was proposed that successive activities of the tip ecto- and endoderm serve as driving forces provided there is a hard outer skeleton. This scheme makes it possible to explain some patterns of growth and morphogenesis in colonial hydroids, such as gradually increasing growth rate of a new tip and its maximum growth rate, differences in the parameters of growth pulsations between shoot and stolon tips, shoot base inclination towards the stolon tip, etc., and provides a basis for further improvement of the model of morphogenesis in hydroids.  相似文献   

10.
11.
12.
1. Indeterminacy in growth of colonial organisms, such as corals, is commonly attributed to their modular construction which frees the colony from the allometric constraints that limit the size of single modules. However, as a colony grows, there may be a decrease in resource availability to interior modules because of active depletion and/or passive deflection by modules on the exterior. The effects of 'self-shading' on resource capture in modular animals are modelled using a simple allometric growth function.
2. The model assumes that resource capture by a module scales as an exponent ( γ ) of colony size (i.e. number of modules). Data taken from the literature indicate that model values of γ for light and prey capture range from – 0·80 to – 1·16 for branching and encrusting corals. Module-specific rates of resource use (i.e. metabolism) are less affected by colony size. Therefore, as a colony grows, net resource state eventually reaches zero, making further growth unsustainable or determinate.
3. The model also predicts an inverse relationship between module size and colony size such as that observed in Caribbean corals. This negative correlation results from the additive effects of module size and colony size on the degree of self-shading.
4. Resource capture is affected by growth form and flow regime, and the interaction between them can account for some of the morphological variation in corals and other colonial suspension feeders.  相似文献   

13.
The possibility that free-spawning marine organisms may be subject to fertilization failure at low population density (due to the effects of sperm dilution) has sparked much interest, but these effects have been demonstrated only in a few species that broadcast their eggs. Some egg-brooding species may overcome dilution effects by filtering low concentrations of sperm from seawater and fertilizing eggs throughout an extended period of time. We examined the effects of population density and size on fertilization in Botryllus schlosseri, a hermaphroditic colonial ascidian that free-spawns sperm, but broods eggs. We experimentally manipulated the size and density of mating groups and surveyed fertilization levels in natural populations that varied in density. Fertilization was not affected by variation in population size or density in either the experimental or natural populations. Near the end of the reproductive season, some eggs may have been fertilized too late to complete development, suggesting a temporal form of sperm limitation that has not been considered in other systems. We also detected greater variability in fertilization levels at lower population density. Nevertheless, these results suggest that caution must be used in extrapolating reported density effects on fertilization to all taxa of free-spawners; density effects may be reduced in brooders that have efficient sperm collection mechanisms.  相似文献   

14.
Microbial populations often experience fluctuations in nutrient complexity in their natural environment such as between high molecular weight polysaccharides and simple monosaccharides. However, it is unclear if cells can adopt growth behaviors that allow individuals to optimally respond to differences in nutrient complexity. Here, we directly control nutrient complexity and use quantitative single-cell analysis to study the growth dynamics of individuals within populations of the aquatic bacterium Caulobacter crescentus. We show that cells form clonal microcolonies when growing on the polysaccharide xylan, which is abundant in nature and degraded using extracellular cell-linked enzymes; and disperse to solitary growth modes when the corresponding monosaccharide xylose becomes available or nutrients are exhausted. We find that the cellular density required to achieve maximal growth rates is four-fold higher on xylan than on xylose, indicating that aggregating is advantageous on polysaccharides. When collectives on xylan are transitioned to xylose, cells start dispersing, indicating that colony formation is no longer beneficial and solitary behaviors might serve to reduce intercellular competition. Our study demonstrates that cells can dynamically tune their behaviors when nutrient complexity fluctuates, elucidates the quantitative advantages of distinct growth behaviors for individual cells and indicates why collective growth modes are prevalent in microbial populations.Subject terms: Microbial ecology, Water microbiology, Biofilms  相似文献   

15.
16.
《Animal behaviour》1986,34(5):1319-1323
Barn swallows (Hirundo rustica) often nest solitarily and are ecologically similar to colonially nesting cliff swallows (H. pyrrhonota). Northern rough-winged swallows (Stelgidopteryx serripennis) also nest solitarily and are ecologically similar to colonially nesting bank swallows (Riparia riparia). We investigated risk-taking in the mobbing of predators for these four species of North American swallows. We presented model owl and weasel predators and examined tendencies of individuals to dive at these predators during mobbing. Individuals of the two solitary species were significantly more likely to dive at predators than were individuals of the two colonial species. Since diving may be risky, we suggest that solitary species take greater per capita risks in mobbing than do colonial species. The reduced risk of falling victim during mobbing may be a benefit of group living that is perhaps independent of the effectiveness of mobbing.  相似文献   

17.
Detecting trends in population size fluctuations is a major focus in ecology, evolution, and conservation biology. Populations of colonial waterbirds have been monitored using demographic approaches to determine annual census size (Na). We propose the addition of genetic estimates of the effective number of breeders (Nb) as indirect measures of the risk of loss of genetic diversity to improve the evaluation of demographics and increase the accuracy of trend estimates in breeding colonies. Here, we investigated which methods of the estimation of Nb are more precise under conditions of moderate genetic diversity, limited sample sizes and few microsatellite loci, as often occurs with natural populations. We used the wood stork as a model species and we offered a workflow that researchers can follow for monitoring bird breeding colonies. Our approach started with simulations using five estimators of Nb and the theoretical results were validated with empirical data collected from breeding colonies settled in the Brazilian Pantanal wetland. In parallel, we estimated census size using a corrected method based on counting active nests. Both in simulations and in natural populations, the approximate Bayesian computation (ABC) and sibship assignment (SA) methods yielded more precise estimates than the linkage disequilibrium, heterozygosity excess, and molecular coancestry methods. In particular, the ABC method performed best with few loci and small sample sizes, while the other estimators required larger sample sizes and at least 13 loci to not underestimate Nb. Moreover, according to our Nb/Na estimates (values were often ≤0.1), the wood stork colonies evaluated could be facing the loss of genetic diversity. We demonstrate that the combination of genetic and census estimates is a useful approach for monitoring natural breeding bird populations. This methodology has been recommended for populations of rare species or with a known history of population decline to support conservation efforts.  相似文献   

18.
Climate models forecast increasing climatic variation and more extreme events, which could increase the variability in animal demographic rates. More variable demographic rates generally lead to lower population growth and can be detrimental to wild populations, especially if the particular demographic rates affected are those to which population growth is most sensitive. We investigated the population dynamics of a metapopulation of 25 colonies of a semi-arid bird species, the sociable weaver Philetairus socius, and how it was influenced by seasonal weather during 1993–2014. We constructed an integrated population model which estimated population sizes similar to observed population counts, and allowed us to estimate annual fecundity and recruitment. Variance in fecundity contributed most to variance in population growth, which showed no trend over time. No weather variables explained overall demographic variation at the population level. However, a separate analysis of the largest colony showed a clear decline with a high extinction probability (0.05 to 0.33) within 5 years after the study period. In this colony, juvenile survival was lower when summers were hot, and adult survival was lower when winters were cold. Rainfall was also negatively correlated with adult survival. These weather effects could be due to increased physiological demands of thermoregulation and rainfall-induced breeding activity. Our results suggest that the dynamics of the population on the whole are buffered against current weather variation, as individual colonies apparently react in different ways. However, if more and increasingly extreme weather events synchronize colony dynamics, they are likely to have negative effects.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号