首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Summary. Antisense transgenesis of tobacco (Nicotiana tabacum) with a partial flax (Linum usitatissimum L.) pectin methylesterase (Lupme3) cDNA sequence yielded plants with altered pollen content. Moreover, the characteristically sculptured cell wall surrounding the pollen grains was modified in transgenic tobacco plants: the wavy ornamentation was dramatically reduced, suggesting the involvement of the demethylation of pectin in the pollen cell wall-specific structure. Germination of pollen was decreased and the pollen tube surface aspect was also different in transgenic plants.Correspondence and reprints: Laboratoire de Biotechnologies et Physiologie Végétales, Faculté des Sciences, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France.  相似文献   

2.
Lu J  Sivamani E  Li X  Qu R 《Plant cell reports》2008,27(10):1587-1600
Ubiquitin is an abundant protein involved in protein degradation and cell cycle control in plants and rubi3 is a polyubiquitin gene isolated from rice (Oryza sativa L.). Using both GFP and GUS as reporter genes, we analyzed the expression pattern of the rubi3 promoter as well as the effects of the rubi3 5'-UTR (5' untranslated region) intron and the 5' terminal 27 bp of the rubi3 coding sequence on the activity of the promoter in transgenic rice plants. The rubi3 promoter with the 5'-UTR intron was active in all the tissue and cell types examined and supported more constitutive expression of reporter genes than the maize Ubi-1 promoter. The rubi3 5'-UTR intron mediated enhancement on the activity of its promoter in a tissue-specific manner but did not alter its overall expression pattern. The enhancement was particularly intense in roots, pollen grains, inner tissue of ovaries, and embryos and aleurone layers in maturing seeds. The translational fusion of the first 27 bp of the rubi3 coding sequence to GUS gene further enhanced GUS expression directed by the rubi3 promoter in all the tissues examined. The rubi3 promoter should be an important addition to the arsenal of strong and constitutive promoters for monocot transformation and biotechnology.  相似文献   

3.
4.
Expression patterns of three Arabidopsis thaliana cytokinin oxidase/dehydrogenase promoter::GUS reporter fusions were investigated in tobacco plants. While cytokinin oxidase/dehydrogenase promoter 2 showed no expression in tobacco, the cytokinin oxidase/dehydrogenase promoters 3 and 4 were active in various tissues throughout development of the tobacco. Recently, the 1452 bp promoter region of AtCKX3 was reported as almost inactive in Arabidopsis. In contrast, the 1627 bp DNA fragment preceding the AtCKX3 coding region drove expression of the reporter GUS gene in various tobacco tissues. The promoter was mainly expressed in tobacco leaves and roots during early stages of development but also later in young flower buds as well as in pollen grains. The construct was particularly active before (hypocotyl region) and during (vascular system) lateral root initiation, supporting the idea of an inhibitory role of active cytokinins in the process of root initiation. The cytokinin oxidase/dehydrogenase promoter 4::GUS fusion in tobacco was shown to share some common (but weaker) expression patterns with promoter 3, namely in the leaves and pollen, but also conferred specific expression in tobacco root cap cells and trichomes. In addition, the response of cytokinin oxidase/dehydrogenase promoter::GUS reporter fusions to infection with the leafy gall-forming bacteria Rhodococcus fascians was examined. While an avirulent strain of R. fascians did not induce expression of any of the cytokinin oxidase/dehydrogenase promoters, the cytokinin oxidase/dehydrogenase promoter 3::GUS fusion was specifically induced at the site of infection when plants were challenged with a virulent strain of R. fascians, providing a possible explanation for the lack of significantly elevated cytokinin concentrations in tissues infected with virulent strains of R. fascians.This revised version was published online in August 2005 with some black and white figures replaced by coloured figures.  相似文献   

5.
Hänsch R  Kurz T  Schulze J  Mendel RR  Cerff R  Hehl R 《Planta》2003,218(1):79-86
The maize (Zea mays L.) glyceraldehyde-3-phosphate dehydrogenase gene 4 (GapC4) promoter confers anaerobic gene expression in tobacco (Nicotiana tabacum L.), potato (Solanum tuberosum L.) and Arabidopsis thaliana (L.) Heynh. Here we have investigated its expression in hybrid poplar (Populus tremula × P. alba). Our results show that the promoter is not expressed in leaves and stems under normoxic conditions while anaerobiosis induces reporter gene expression in leaves up to a level observed for the STLS-1 promoter from potato that is shown to confer leaf-specific gene expression in transgenic poplar. Anaerobic induction is cell autonomous and requires a CO2 atmosphere and light. As in tobacco, the GapC4 promoter in poplar is wound inducible. The induction by CO2 and light may reflect a natural situation because flooding, a natural cause of anaerobiosis, is often accompanied by high CO2 concentrations in the floodwater. Our results show that the GapC4 promoter is suitable as an anaerobic reporter and as an inducible gene expression system in poplar.Abbreviations CaMV cauliflower mosaic virus - GapC4 glyceraldehyde-3-phosphate dehydrogenase gene 4 - GUS -glucuronidase - 4-MU methylumbelliferone - STLS-1 stem- and leaf-specific promoter 1  相似文献   

6.
Brassica campestris Male Fertile 5 (BcMF5), a novel member of the pollen coat protein class A (PCP-A) gene family, was identified from Brassica campestris L. ssp. chinensis Makino (Chinese cabbage-pak-choi). Temporal and spatial expression analysis showed that BcMF5 is a late-expressed PCP gene related to the process of determining pollen fertility. Functional analysis by hairpin RNA (hpRNA)-mediated RNA interference also showed that the expression of BcMF5 is inhibited, which resulted in the low germination ability of the pollen and also in an abnormality of the pollen exemplified by a collapsed germination furrow. This demonstrates that the expression of BcMF5 is closely related to the tapetum. Further, the expression profile of the BcMF5 promoter in Arabidopsis was also analyzed. This analysis indicated that the BcMF5 promoter began expression in the early stage of anther development and drove high levels of glucuronidase (GUS) expression in anthers, pollen, and the pollen tube in the late stage of pollen development, but did not drive any expression in petals, sepals, or pistils. Together with the functional analysis, the hypothesis that BcMF5 may have a sporophytic or gametophytic expression pattern is presented.  相似文献   

7.
To study pollen-specific gene expression, fast and convenient methods involving in vitro pollen germination and bombardment with promoter deletion constructs are needed. Unfortunately, because of variation of pollen germability and tube growth, conducting these experiments is often unsatisfying for many plant species, including maize, especially when pollen is collected at different times of the day or season. We have overcome these problems by defining a novel medium (PGM) that guarantees germination efficiencies of more than 90% for maize pollen from at least 7 genotypes (A188, AC 3572 C, B73, H99, Hi-II, Q2, Tx232). This medium is also suitable to germinate pollen of other monocot species, such asPennisetum americanum andTradescantia species, and dicot species, such asArabidopsis thaliana, Arachis hypogaea, Columnea oesterdiana, Nicotiana tabacum, Phaseolus vulgaris, Pisum sativum, Solanum lycopersicum, Solanum tuberosum, andVicia faba. On average, reproducible germination rates ranging from 50–100% were observed with all plant species tested. In addition, we report a transient transformation assay using the luciferase (Luc) reporter gene. Biolistic parameters were defined to obtain reproducibleLuc activity measurements after bombarding thick-walled pollen, such as maize pollen. For comparison, samples of germinated maize and tobacco pollen were bombarded with the reporter gene under control of the constitutive ubiquitin-and pollen-specificZmMADS2 maize promoters. The important parameters necessary to apply both in vitro pollen germination and transient transformation for a large range of plant species are discussed. An erratum to this article is available at .  相似文献   

8.
Douglas-fir (Pseudotsuga menziesii [Mirb] Franco) metallothionein (PmMT) cDNA encodes a novel cysteine- and serine-rich MT, indicating a new subtype or prototype MT from which other plant MTs may have evolved. A genomic library of Douglas-fir was screened using MT cDNA probes, and genomic sequences that mediate tissue-specific, temporal as well as inducible expression of the embryo-specific MT-gene were analyzed. The promoter region of the PmMT genomic clone (gPmMT) contained a hexameric G-box, two putative ethylene-responsive elements and an inverted repeat of a motif similar to the core metal regulatory element. Interestingly, comparison of the upstream region of Douglas-fir gPm2S1 and gPmMTa genes revealed a conserved motif, CATTATTGA, not found in any known angiosperm gene promoter. Chimeric gene constructs containing a series of deletions in the gPmMTa promoter fused to the uidA reporter gene were assayed in Douglas-fir and transgenic tobacco (Nicotiana tabacum L.). Transient-expression assays in Douglas-fir megagametophyte and zygotic embryos indicated that the sequence –190 to +88 of gPmMTa was sufficient to drive the expression of the reporter gene and that the 225-bp fragment (–677 to –453) contained sequences necessary for high-level expression. In transgenic tobacco seedlings the -glucuronidase activity was localized in the vacuolar tissue and proliferating tissue of the auxiliary buds and stem elongation zone. The gPmMTa promoter was not active in the seeds of transgenic tobacco or in the roots of seedlings up to 3 weeks old. Detailed studies of transient expression and stable transformation provided important information on evolutionary conservation as well as novel features found in the conifer promoter. This is the first report of an MT-like gene promoter from conifers.  相似文献   

9.
10.
11.
We have evaluated the expression of the reporter -glucuronidase (GUS) gene driven by the cauliflower mosaic virus 35S (CaMV 35S) promoter in flowers and pollen from 14 independent transgenic strawberry lines. Of the 14 lines evaluated, 13 (92.8%) showed GUS activity—as estimated by the histochemical GUS assay—in some floral organs, with expression being most common in the flower stem, sepals, petals, ovary and stigma. Ten of these thirteen transgenic lines (77%) showed GUS activity in pollen, although the percentages of positive pollen per flower varied greatly among the different lines. A study of the GUS expression during pollen maturation showed that the (CaMV 35S) promoter showed low expression in pollen from flower buds before anthesis but was activated in mature pollen following anther dehiscence. The percentages of pollen grains that showed GUS activity ranged from 2.1% to 46.3%. These percentages were similar or even higher when mature pollen was stored dry at room temperature for 2 weeks. After 5 weeks of storage, the percentages of GUS-positive pollen decreased in two of the six lines analysed but remained at similar values in the other four lines. GUS activity was also measured in protein extracts of mature pollen by means of the fluorometric GUS assay, with the values obtained ranging from 3.8 mol MU mg protein–1 h–1 to 0.26 mol MU mg protein–1 h–1. Contrary to the generally held view that the CaMV 35S promoter is virtually silent in pollen, we conclude that it is highly expressed in transgenic strawberry pollen.Abbreviations CaMV 35S Cauliflower mosaic virus promoter - GUS -Glucuronidase (EC 3.2.1.31) - MU 4-Methyl umbelliferone - nos Nopaline synthase promoter - nptII Neomycin phosphotransferase - X-Gluc 5-Bromo-4-chloro-3-indolyl--d-glucuronic acid  相似文献   

12.
13.
14.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes a key step in isoprenoid metabolism leading to a range of compounds that are important for the growth, development and health of the plant. We have isolated 7 classes of genomic clones encoding HMGR from a potato genomic library. Comparison of nucleic acid sequences reveals a high degree of identity between all seven classes of clones and the potato hmg 1 gene described by Choi et al. (Plant Cell 4: 1333, 1992), indicating that all are members of the same subfamily in potato. A representative member (hmg 1.2) of the most abundant class of genomic clones was selected for further characterization. Transgenic tobacco and potato containing the -glucuronidase (GUS) reporter gene under the control of the hmg 1.2 promoter expressed GUS activity constitutively at a low level in many plant tissues. High levels of GUS activity were observed only in the pollen. GUS assays of isolated pollen, correlations of GUS activity with the HMGR activity of anthers, hmg 1.2 promoter deletion studies, and segregation analysis of the expression of hmg 1.2::GUS among the R2 pollen of R1 progeny plants demonstrated that the hmg 1.2 promoter controls pollen expression.  相似文献   

15.
16.
A chimeric gene consisting of the -glucuronidase (gusA) reporter gene under the control of the metallothionein-like promoter cgMT1 from the tropical tree Casuarina glauca was introduced into Nicotiana tabacum via Agrobacterium tumefaciens and into Oryza sativa by particle bombardment. The strongest histochemical staining for GUS activity was observed in the root system of the transgenic plants, and especially in lateral roots. In contrast, a relatively low level of reporter gene expression was seen in the aerial tissues and GUS staining was located mainly in the plant vascular system. The average ratio of GUS activity between root and leaf was found to be 13:1 in tobacco and 1.5:1 in rice. The pattern of cgMT1 promoter activity in floral organs was found to be different in tobacco and rice. High levels of gusA gene expression were detected in the ovules, pollen grains and tapetum, whereas in rice PcgMT1 directs expression to the vascular system of the floral organs. These results suggest that PcgMT1 is potentially useful in molecular breeding to express genes of interest whose products are preferentially needed in roots.  相似文献   

17.
18.
Genetically engineered pollen with a visible marker gene could be useful to monitor the movement of transgenic pollen provided there are no negative physiological or fitness effects of expressing such a gene. In this study, we measured the fitness of Nicotiana tabacum cv. Xanthi pollen expressing the marker gene green fluorescent protein (GFP). Average pollen tube germination frequencies and pollen tube growth rates in vitro were measured in three different types of plants: (1) plants producing GFP in pollen cells only (LAT59-GFP), (2) plants synthesizing GFP under the control of a constitutive promoter (CaMV 35S) in which no GFP was produced in pollen, and (3) non-transgenic plants. Pollen synthesizing the GFP protein did not differ significantly in average pollen germination frequencies from pollen without GFP (P=0.65). Average pollen tube growth rates over a 5-h period did not differ significantly between transgenic and non-transgenic types (R2=0.89, 0.98, and 0.95, respectively, for GFP-tagged, 35S-GFP, and wild type). Overall, GFP expression in pollen grains of tobacco was not found to have an effect on pollen fitness under the controlled experimental conditions of this study.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号