首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrogen receptor-alpha (ERalpha) knockout (ERalphaKO) female mice are infertile. Initially, they exhibit normal follicular development, but by 4-5 wk of age, they begin to develop hemorrhagic ovarian cysts. Follicles in adult ERalphaKO female mice progress to the graafian stage, but there are no corpora lutea (CL). To test whether ERalpha is required for ovarian folliculogenesis, ovulation, and CL formation, eCG and hCG were used to ovulate 3- to 5-wk-old ERalphaKO and wild-type (WT) sibling mice. Gonadotropin administration resulted in ovulation in both ERalphaKO and WT mice. Gonadotropin-treated ERalphaKO females that ovulated produced 7.09 +/- 0.77 oocytes per mouse, whereas gonadotropin-treated WT female mice had 16.17 +/- 0.84 oocytes. Surprisingly, ruptured ERalphaKO ovarian follicles developed into CL that had normal morphology. Gonadotropin-treated ERalphaKO mice had 3-fold higher concentrations of serum progesterone than did control ERalphaKO mice that had been administered saline rather than gonadotropins. Thus, the CL in gonadotropin-treated ERalphaKO mice appeared to be steroidogenically functional. On the basis of these findings, ovarian folliculogenesis, ovulation, and CL formation can occur in the absence of ERalpha, although to a lesser extent than in WT mice.  相似文献   

2.
Testicular orphan nuclear receptor 4 (TR4) plays essential roles for normal spermatogenesis in male mice. However, its roles in female fertility and ovarian function remain largely unknown. Here we found female mice lacking TR4 (TR4-/-) displayed subfertility and irregular estrous cycles. TR4-/- female mice ovaries were smaller with fewer or no preovulatory follicles and corpora lutea. After superovulation, TR4-/- female mice produced fewer oocytes, preovulatory follicles, and corpora lutea. In addition, more intensive granulosa apoptosis was found in TR4-/- ovaries. Functional analyses suggest that subfertility in TR4-/- female mice can be due to an ovarian defect with impaired folliculogenesis rather than a deficiency in pituitary gonadotropins. Molecular mechanism dissection of defective folliculogenesis found TR4 might induce LH receptor (LHR) gene expression via direct binding to its 5' promoter. The consequence of reduced LHR expression in TR4-/- female mice might then result in reduced gonadal sex hormones via reduced expression of enzymes involved in steroidogenesis. Together, our results showed TR4 might play essential roles in normal folliculogenesis by influencing LHR signals. Modulation of TR4 expression and/or activation via its upstream signals or unidentified ligand(s) might allow us to develop small molecule(s) to control folliculogenesis.  相似文献   

3.
One hundred and thirteen crossbred gilts were used in three experiments to examine the relationship between the pattern or sequence of ovulation and subsequent variation in the morphology of Day 11 embryos. In the first experiment, the percentage of follicles that had ovulated was determined in individual gilts at 26, 30, 34, or 38 h after the onset of estrus (n = 20) and 39, 41, 43, 45, or 47 h post-injection of human chorionic gonadotropin (n = 25; hCG, 1000 IU). The second experiment consisted of observing the percentage of follicles ovulated in 52 additional gilts at 34 h after the onset of estrus (Day 0). In the third experiment, the morphological variation among littermate embryos was compared on Day 11 between sham-operated control gilts (n = 8) and gilts whose nonovulated follicles were destroyed by electrocautery (n = 8) on Day 1. Results of these experiments indicated that the pattern of ovulation in gilts was skewed (p less than 0.01). Ovulation, induced with hCG, appeared to occur in a majority of follicles during a short period of time, whereas the remaining ovulations occurred over a longer interval. Of the 57 gilts observed at 34 h after natural estrus, ovaries of 25 gilts contained corpora hemorrhagica (CH) and follicles; one gilt had 1 CH and 17 follicles, and 24 others had 10-17 CH with 1-4 follicles remaining. Destruction of these nonovulated follicles resulted in a more (p less than 0.01) uniform group of Day 11 embryos and with fewer (p less than 0.05) small embryos. These data demonstrated that the pattern of ovulation may affect morphological variation in embryonic development such that some of the later ovulating follicles may represent smaller embryos within a litter.  相似文献   

4.
On Day 10 of pseudopregnancy, rabbits were given an i.v. injection of hCG (10-20 i.u.) that was sufficient to cause new ovulations and the loss of follicular oestradiol secretion. There was an immediate 3-4-fold rise in serum progesterone which returned to near prestimulation values (approximately 27 ng/ml) within 12 h in the presence of an implant containing oestradiol-17 beta. In the absence of oestradiol, serum progesterone continued to decline to reach low values (approximately 4 ng/ml) within 24 h and the original corpora lutea subsequently regressed. The administration of oestradiol 24 h after injection of hCG, when progesterone secretion was low, arrested any further decline in progesterone and then restored serum progesterone to normal values. This steroidogenic effect of oestradiol in vivo was a function of enhanced luteal steroidogenesis; corpora lutea removed and incubated for 12 h produced progesterone at high, linear rates, whereas the corpora lutea from animals that did not receive oestradiol produced low or insignificant quantities of progesterone in vitro. We conclude that hCG at these doses is compatible with continued responsiveness of the corpora lutea to oestrogen and that hCG produces its luteolytic effect primarily by ovulating follicles, thus stopping the secretion of the luteotrophic hormone, oestradiol.  相似文献   

5.
Ovarian response to exogenous hormones in six-week-old lambs.   总被引:3,自引:0,他引:3  
Crossbred lambs 5--6 weeks old were treated with human chorionic gonadotrophin (hCG) (500 or 1500 i.u.) alone, hCG plus pregnant mare serum gonadotrophin (PMSG) (1000 or 2000 i.u.), 1000 i.u. PMSG alone, or were untreated. PMSG alone and PMSG + hCG increased ovarian weight and uterine weight. PMSG alone stimulated growth and luteinization of follicles but PMSG + hCG induced ovulations and formation of corpora lutea. hCG alone did not change any of the characteristics which were measured. PMSG had a significant effect on the number of vesicular follicles but none of the treatments affected the number of growing follicles.  相似文献   

6.
Steroid production and histological features of ovaries were compared either among normal +/+ mice of 3-12 days of age or among 12-day old mutant mice with various degrees of oocyte depletion. Whole ovaries were cultured in the medium containing [3H]progesterone and hCG or 4-androstene-3,17-dione and FSH; amounts of [3H]androgens or oestrogens released from the ovaries were assayed. FSH-responsive aromatase activity was detectable in ovaries of +/+ mice on day 3 after birth (2.6 +/- 0.4 pmol/2 ovaries/48 h), but the activity producing androgens from progesterone, under stimulation of hCG, was not detectable even on day 6 after birth (less than 0.1 pmol/2 ovaries/48 h). The androgen-producing activity appeared on day 9 after birth (1.16 +/- 0.25 pmol/2 ovaries/48 h), when follicles with more than two layers of granulosa cells developed. The ovaries of 12-day old Sl/Slt mice contained a considerable number of follicles with a single layer of granulosa cells, but did not contain any follicles with more than two layers of granulosa cells. The ovaries of Sl/Slt mice possessed aromatase activity (3.3 +/- 0.4 pmol/2 ovaries/48 h) but, not androgen-producing activity (less than 0.1 pmol/2 ovaries/48 h). The present results suggest that development of follicles with more than two layers of granulosa cells may induce the activity producing androgens from progesterone under stimulation of LH in suckling mouse ovaries, though the FSH-responsive aromatase activity is present even in follicles with a single layer of granulosa cells.  相似文献   

7.
The effects of an insulin-like growth factor-binding protein (IGF-BP) on rat follicular function were examined by using the technique of ovarian intrabursal (IB) injection. Immature female rats were injected with 15 IU of eCG followed immediately with IB injections of 4 micrograms IGF-BP3 (right ovary) and vehicle (left ovary). Forty-eight hours later, the same animals were either killed (eCG-treated group) or injected with 1 microgram of hCG as an ovulatory stimulus. These animals were killed 24 h later (eCG/hCG-treated group). Intrabursal administration of IGF-BP3 inhibited ovulations in the eCG/hCG-treated rats by 55% when compared with the contralateral vehicle-treated ovary (p = 0.01). Examination of the ovaries exposed to IGF-BP3 revealed the presence of unruptured follicles containing a matured oocyte and a disintegrated basement membrane, in addition to normal follicles and corpora lutea. In contrast, IB injection of IGF-BP3 had no effect on ovarian weights or circulating estradiol concentrations in the eCG-treated animals, and the ovaries appeared to be morphologically normal. Ligand blotting experiments using [125I]-labeled insulin-like growth factor I revealed that granulosa cells obtained from both untreated and eCG-treated rats synthesized and secreted two IGF-BPs of Mr 35,000 and 30,000. Equine chorionic gonadotropin treatment reduced the amount of the 30,000 Mr form of IGF-BP. These data suggest that locally produced ovarian IGF-BPs may modulate follicle functions in vivo.  相似文献   

8.
9.
Luteal function was studied in the absence of non-ovulatory ovarian follicles to determine if these follicles are involved in luteal regression in cattle. After at least one estrous cycle, cows were assigned randomly to treatment (n=5) or control (n=5). All cows were laparotomized on day 10 postestrus (Estrus = day 0). During laparotomy of treated cows, all visible follicles on both ovaries were destroyed by electrocautery, and follicular growth was prevented by ovarian x-irradiation. In controls, laparotomy and ovarian manipulation were as in treated cows but follicles were not destroyed and ovaries were not irradiated. On day 22 postestrus, ovaries of 4 treated cows contained no visible follicles and concentrations of estradiol-17beta in jugular plasma (0.4 +/- 0.1 pg/ml) were less (P<0.05) than in controls (3.2 +/- 0.4 pg/ml). Daily mean concentrations of LH from surgery to day 22 postestrus in treated cows did not differ from controls. On day 22 postestrus, progesterone in jugular plasma and weights of corpora lutea in treated cows were greater (P<0.05) than in controls. Between days 12 and 18 postestrus, concentrations of estradiol-17beta and PGF(2)alpha in utero-ovarian venous plasma of controls increased prior to detectable declines in concentrations of progesterone. Therefore, non-ovulatory ovarian follicles present during mid to late diestrus are necessary for luteal regression in non-pregnant cattle.  相似文献   

10.
Prepubertal ewe lambs were treated with FSH after progesterone priming for 12 days (Group P), monensin supplementation for 14 days (Group M) or a standard diet (Group C). Serial blood samples were taken for LH and progesterone assay, and ovariectomy was performed on half of each group 38-52 h after start of treatment to assess ovarian function, follicular steroid production in vitro and the concentration of gonadotrophin binding sites in follicles. The remaining ewe lambs were ovariectomized 8 days after FSH treatment to determine whether functional corpora lutea were present. FSH treatment was followed by a preovulatory LH surge which occurred significantly later (P less than 0.05) and was better synchronized in ewes in Groups P and M than in those in Group C. At 13-15 h after the LH surge significantly more large follicles were present on ovaries from Group P and M ewes than in Group C. Follicles greater than 5 mm diameter from ewes in Groups P and M produced significantly less oestrogen and testosterone and more dihydrotestosterone, and had significantly more hCG binding sites, than did similar-sized follicles from Group C animals. Ovariectomy on Day 8 after the completion of FSH treatment showed that ewes in Groups P and M had significantly greater numbers of functional corpora lutea. These results indicate that, in prepubertal ewes, progesterone priming and monensin supplementation may delay the preovulatory LH surge, allowing follicles developing after FSH treatment more time to mature before ovulation. This may result in better luteinization of ruptured follicles in these ewes, with the formation of functional corpora lutea.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
On Days 28-30 of age, hypophysectomized rats were treated with oestradiol-17 beta (0.1 mg/day) and/or clomiphene citrate (0.1 mg/day). Subsequent treatment with PMSG (10 i.u., on Day 31) and hCG (10 i.u., on Day 33) was identical for all animals. Rats were killed on Day 34. Treatment with oestradiol-17 beta alone resulted in ovulations of 45.1 +/- 5.5 oocytes/rat (mean +/- s.e.m.). There were no ovulations among animals treated with clomiphene citrate alone but treatment with oestradiol-17 beta and clomiphene citrate resulted in a significant (P less than 0.05) reduction (23.1 +/- 7.6 oocytes/rat) in ovulatory response. Similarly, ovarian weights and serum progesterone concentrations were highest in the oestradiol-17 beta-treated rats, intermediate in those given oestradiol plus clomiphene citrate and the lowest in rats receiving clomiphene citrate alone. We suggest that clomiphene citrate exerts direct ovarian antiovulatory and oestrogen-antagonist actions.  相似文献   

12.
The objective of this study was to examine the local effects of the corpus luteum (CL) on ovarian antral follicle development by looking at follicle populations and dynamics in ovaries with or without CL, in unilaterally ovulating ewes, using a retrospective analysis of daily ultrasonographic records. The present report summarises the data from the first luteal phase of the breeding season (August-October; n = 4), a luteal phase in the mid-breeding season (November-December; n = 5), the last luteal phase of the breeding season (January-March; n = 5), and the luteal phase after GnRH-induced ovulations in mid-anoestrus (May-June; n = 4) of western white-faced ewes. Mean daily numbers of 3mm follicles that did not grow any larger were significantly reduced in the CL-containing ovaries of ewes at all periods of study except for the transition to anoestrus. With all scanning periods combined, daily numbers of 3mm follicles not growing further increased (P<0.05) between day 6 and 15 after ovulation in the CL-containing ovaries. Based on mean data for the whole periods of observation, the non-CL-bearing ovaries of ewes in the transition to anoestrus had fewer (P<0.05) follicles growing from 3 to > or =5mm in size before regression compared with the mid-breeding season and mid-anoestrus. The lifespan of follicles reaching > or =5mm in diameter was shorter (P < 0.05) in the CL- compared with non-CL-containing ovaries of anoestrous ewes induced to ovulate with GnRH ((6.5+/- 1.3) and (9.0+/- 1.0) days, respectively). Circulating concentrations of progesterone were lower during both transitional periods (into and out of anoestrus) and mid-anoestrus than during the mid-breeding season (P < 0.001), and were less during anoestrus than during both transitional periods (P < 0.05). It was concluded that CL/luteal structures locally suppressed the growth of ovarian antral follicles to the 3mm size-range except during the transition to anoestrus, but that there was no inhibitory effect of the CL on the growth of ovarian follicles to larger diameters. The presence of CL/luteal structures did not affect the length of the lifespan of follicles reaching > or =5mm in diameter nor the number of ovulations per ovary in cyclic ewes, but shortened large follicle lifespan in anoestrous ewes. Variations in peripheral concentrations of progesterone across the breeding season and between the breeding season and anoestrus did not alter the lifespan of large antral follicles. In the transition to anoestrus and during mid-anoestrus, the presence of the CL in an ovary appeared to maintain follicle development to ovulatory sizes and to increase the rate of turnover of large antral follicles, respectively.  相似文献   

13.
14.
15.
The introduction of rams to a group of previously isolated anoestrous ewes has been shown to stimulate ovarian follicular development and ovulation. The present experiment was carried out to determine the ability of follicles arising from this ram stimulus to produce steroids and bind hCG. Seasonally anoestrous Southdown ewes were exposed to rams for 24 h, 40 h, 3 days, 10 days or 20 days before ovariectomy. Steroid production and the concentration of hCG binding sites in follicles dissected from the ovaries were measured in vitro. The presence of a ram caused ovulation and enhanced oestradiol production by follicles, but had little effect on total androgen production or the number of hCG binding sites present in the follicles when compared to follicles from anoestrous ewes. The oestradiol concentrations in large follicles were not as high as in preovulatory follicles from cyclic ewes reported in other studies. Follicles continued to develop through the ram contact period and when incubated after 40 h and 10 days of ram contact produced high levels of progesterone, indicating partial luteinization, although the corpora lutea (CL) resulting from the induced ovulations regressed prematurely. We suggest that the lack of hCG binding sites in ram-induced follicles may be the cause of poor luteinization and suboptimal development of luteal tissue after induced ovulation in ewes during seasonal anoestrus.  相似文献   

16.
Fibroblast growth factors play an important role in the control of ovarian folliculogenesis, but the complete repertoire of ovarian receptors which can transduce the fibroblast growth factor signals and their precise localization in the ovary have not yet been characterized. The most common form of inherited human dwarfism results from a point mutation in the transmembrane region of fibroblast growth factor receptor 3. A mouse model for achondroplasia was generated by introducing the human mutation (glycine 380-arginine) into the mouse fibroblast growth factor receptor 3 (G374R) by a "knock-in" approach using gene targeting leading to a constitutively active receptor. This resulted in the development of dwarf mice that share many features with human achondroplasia. Here we report that female (fibroblast growth factor receptor 3 G374R) dwarf mice become infertile. While no significant changes were observed in the anatomical and histological appearance of ovaries of 3-wk-old dwarf mice, a dramatic difference was observed in ovaries of 3-month-old mice. The normal ovary consists mainly of healthy corpora lutea and follicles at different stages of development, whereas the ovaries of the dwarf mice remain small and contain mainly follicles with a progressive apoptosis in the granulosa cells, and no corpora lutea could be observed. The levels of LH, FSH, and progesterone were lower by 72.3%, 38.0%, and 40.0%, respectively, in the blood of the dwarf mice compared with normal mice, and the total bioactivity of pituitary FSH and LH was lower by 65.6% and 79.6%, respectively, in the dwarf mice compared with normal mice. However treatment with PMSG and human CG of the dwarf mice led to rapid follicular development and formation of corpora lutea. Interestingly, the expression of the tumor suppressor gene p53 was increased dramatically in ovaries of the dwarf mice. The presence of the fibroblast growth factor receptor 3 cellular receptors in both normal and dwarf animals was demonstrated by Western blot and immunostaining. However, the distribution of the fibroblast growth factor receptors in the two strains shows significant differences. In the normal ovaries fibroblast growth factor receptor 3 was homogeneously distributed on the cell membrane of the granulosa cells and was absent in theca as well as corpora lutea cells, whereas in dwarf mice ovaries it was highly clustered on granulosa cells and very often appears in endocytic vesicles. Aged oocytes were more frequently observed in preantral follicles of ovaries of the dwarf mice. Nevertheless, oocytes isolated from antral follicles resume their meiotic division at a high percentage, similar to oocytes obtained from normal ovaries. The results imply fibroblast growth factor receptor 3 involvement in the control of follicular development through regulation of granulosa cell growth and differentiation, and that unovulation in the dwarf mice could be overcome in part by administration of exogenous gonadotropins. Moreover, it is suggested that the infertile phenotype is partially due to defects in the pituitary-gonadal axis.  相似文献   

17.
The aim of this study was to locate a possible activin/activin receptor system within porcine ovaries containing functional corpora lutea. In situ hybridization was used to assess the gene expression of beta(A)- and beta(B)-activin subunits, and immunohistochemical studies were done to detect activin-A protein and activin receptor type II. mRNA expression of the beta(A)- and beta(B)-activin subunits was found in the granulosa from the unilaminar follicle stage onward, in the developing thecal layer of multilaminar and small antral follicles, in the theca interna of mid-sized antral follicles, in corpora lutea, and in the ovarian surface epithelium. Immunoreactive activin A protein could be detected at the same ovarian sites, but in thecal tissue of small antral follicles only. This protein was also demonstrated at the peripheral zone of oocytes from multilaminar and antral follicles. A positive immunoreaction for activin receptor was found in granulosa cells from multilaminar and older follicles and in oocytes from the earliest stages of follicular development onward. In late multilaminar follicles and in antral follicles, the oolemma was stained. Except for small antral follicles, a positive activin receptor immunoreaction was absent in the follicular theca. Activin receptor immunoreaction was furthermore present in corpora lutea and in the ovarian surface epithelium. It is concluded that, within porcine ovaries containing functional corpora lutea, an activin/activin receptor system is present in all intact follicles, the corpora lutea and the surface epithelium. Within follicles, granulosa and theca cells are the main sites of activin synthesis, while oocytes and granulosa cells are the main activin binding sites.  相似文献   

18.
BACKGROUND: Nitric oxide (NO) plays an important role in numerous reproductive processes. To date, most studies have assessed the role of NO by using nonspecific pharmacological inhibitors of the precursor to NO, nitric oxide synthase (NOS). These pharmacological NOS inhibitors suppress all isoforms of NOS; thus, the precise contribution of each isoform to female reproductive physiology is unknown. The purpose of this study was to determine the specific role of neuronal NOS (nNOS) in the regulation of ovulation in female mice lacking the gene that encodes for nNOS (nNOS-/-). MATERIALS AND METHODS: Ovulation was assessed in wild-type (WT) and nNOS-/- female mice by examining the number of ovarian rupture sites and number of oocytes recovered from the oviducts following mating or exposure to exogenous gonadotropins (i.e., 5 IU pregnant mares serum gonadotropin [PMSG] and 5 IU human chorionic gonadotropin [hCG]). Ovulatory efficiency was determined as the number of ovulated oocytes per number of ovarian rupture sites. To examine whether ovulatory deficits in nNOS-/- mice were due to alternations in central mechanisms, plasma luteinizing hormone (LH) concentrations were assessed in WT and nNOS-/- mice that were challenged with 25 ng of gonadotropin-releasing hormone (GnRH). To determine whether ovulatory deficits in nNOS-/- mice were due to local ovulation processes, nerves innervating the reproductive tract of WT and nNOS-/- females were examined for the presence of nNOS protein. RESULTS: There were substantial fertility deficits in nNOS-/- female mice; the nNOS-/- mice had fewer oocytes in their oviducts following spontaneous and gonadotropin-stimulated ovulation. Pituitary responsiveness to exogenous GnRH challenge was intact in nNOS-/- mice. Dense nNOS protein staining was observed in nerves innervating the reproductive tracts of WT mice. CONCLUSIONS: The reproductive deficits in nNOS-/- females are most likely due to alternations in the transfer of oocytes from the ovaries to the oviducts during ovulation. These results suggest that defects in neuronally derived NO production may contribute to female infertility.  相似文献   

19.
This study was conducted to determine whether ovarian morphology and developmental competence of in vitro-matured (IVM) oocytes is immediately affected by the onset of puberty in the pig. Ovaries of peri-pubertal pigs were sorted into two groups according to the presence or absence of corpora lutea presence (CL and NCL, respectively. Ovary dimensions, follicle diameter and number, and oocyte diameter (with and without zona pellucidae) were determined. The developmental competence of in vitro-matured oocytes from these two groups was evaluated following parthenogenetic activation and culture in vitro. CL ovaries were significantly (P<0.01) larger than NCL ovaries (width: 22.3+/-0.9 mm versus 15.9+/-0.4 mm, length: 33.2+/-1 mm versus 24.1+/-0.4 mm). Although CL ovaries had fewer antral follicles in total compared with NCL ovaries (21.1+/-1.8 mm versus 46.8+/-2.2 mm), they had a similar number of follicles 3-8mm in diameter. The mean diameter of follicles that were aspirated was greater for CL ovaries than for NCL ovaries (4.5+/-0.1 mm versus 3.3+/-0.02 mm). Oocytes from CL ovaries were greater in diameter compared with those from NCL ovaries (zona retained: 159+/-1.3 microm versus 146.1+/-1.5 microm, zona free: 124.7+/-1.8 microm versus 113.1+/-1.6 microm). No differences were found between oocytes from CL and NCL ovaries for rates of meiotic maturation (91.6+/-3.2% versus 92.4+/-3.2%), cleavage (88.4+/-11% versus 90.7+/-2.6%) and blastocyst formation (21.0+/-3.7% versus 23.7+/-5.7%). Therefore, the onset of puberty coincides with immediate changes in ovarian morphology, increased ovary size, follicle and oocyte diameter, but not with improved oocyte developmental competence. This suggests that the higher developmental competence usually observed in adult oocytes is acquired gradually and requires exposure to multiple estrus cycles.  相似文献   

20.
Characterization of integrin expression in the mouse ovary   总被引:7,自引:0,他引:7  
Integrin alpha:beta heterodimers mediate cell contacts to the extracellular matrix and initiate intracellular signaling cascades in response to a variety of factors. Integrins interact with many determinants of cellular phenotypes and play roles in controlling the development, structural integrity, and function of every type of tissue. Despite their importance, little is known about the regulation of integrin subunits in the mammalian ovary and how they function in folliculogenesis. To determine their relevance to ovarian physiology, we have studied the expression of integrin subunit mRNAs by Northern blot analysis and in situ hybridization in ovaries of wild-type, growth differentiation factor 9 (Gdf 9) knockout, FSHbeta (Fshb) knockout, and inhibin alpha (Inha) knockout mice. Integrin alpha6 mRNA is expressed in oocytes and granulosa cells of single-layer follicles and in oocytes and theca cells of multilayer follicles. Integrin alpha6 is highly expressed in Gdf 9 knockout ovaries, which are enriched in oocytes and primary (single layer) follicles because of a block at this stage of follicular development. Integrin alpha(v) mRNA is most highly expressed in the granulosa cells of multilayer growing follicles, and therefore only low levels of expression are detectable in the Gdf 9 knockout ovaries. Integrin beta1 mRNA exhibits a broad expression pattern in ovaries, including oocytes, granulosa cells, theca cells, and corpora lutea. Integrin beta3 mRNA is expressed in theca and interstitial cells and is upregulated in corpora lutea. It is nearly undetectable in ovaries of Fshb knockout mice, which develop preantral follicles but have no luteal cells. Integrin beta5 mRNA is predominantly expressed in granulosa cells of multilayer follicles. It is expressed at high levels in the Fshb knockout mice and in a compartmentalized manner in the granulosa cell/Sertoli cell tumors that develop in the Inha knockout mice. Specific integrins are associated with ovarian cellular phenotypes in mice, which raises intriguing possibilities as to integrin functions in oocyte competence, follicular development, luteinization, and granulosa cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号