首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of [3H]dopamine (DA) into rat striatal synaptosomes in the presence of a monoamine oxidase inhibitor was studied using a filtration technique. After a 10-min preincubation period, a fast initial uptake of [3H] DA was seen. Uptake reached a maximum after 4 min of incubation. If incubation was continued for more than 7 min, a gradual decrease in synaptosomal [3H]DA levels was found. Uptake was dependent on preincubation time; initial uptake velocity and maximal uptake decreased irreversibly with increasing preincubation periods. Moreover, the capacity of the synaptosomes to retain the [3H]DA during longer incubation times was progressively affected. The decrease in initial uptake activity was due to a decrease in the Vmax of the transport system. Dithiothreitol (2.8 mM) protected synaptosomal uptake activity against deterioration at 37°C. Also, DA itself (10-7M) stabilized the uptake mechanism if added to the suspension before preincubation was started. Since [3H]DA uptake observed after loading the synaptosomes with labeled DA was similar to the uptake seen if the synaptosomes were not previously loaded with DA, it was concluded that under these conditions synaptosomal DA is completely exchangeable with exogenous substrate. Prolonged storage of the synaptosomes at 0°C also resulted in a time-dependent decrease in uptake activity (t1/2= 116 min). The addition of unlabeled DA or dithiothreitol to the suspension did not affect instability at 0°C.  相似文献   

2.
Abstract: Dopamine synthesis regulation as a function of pH has been examined in rat brain striatal synaptosomes. Synthesis stimulation produced by lowering the incubation pH from 7.2 to 6.2 is accompanied by a significant increase in apparent A'm for tyrosine and in apparent Vmax. While these kinetic alterations are similar to those produced by the depolarizing agent veratridine, it does not appear that synthesis is stimulated at pH 6.2 via synaptosomal depolarization since (1) synthesis stimulation still occurs at pH 6.2 in a calcium-free medium in contrast to the calcium-dependency of veratridine- induced stimulation and (2) tyrosine uptake is not inhibited by incubation at pH 6.2, but is markedly inhibited by veratridine. In order to study how the regulatory properties of synaptosomal preparations vary according to pH, the ability of synaptosomal dopamine synthesis to respond to various agents was tested between pH 7.2 and 6.2. The stimulatory effects of veratridine, amphetamine, phenylethylamine and dibutyryl cyclic AMP at pH 7.2 were significantly diminished at pH 6.2. In addition, incubation at pH 6.2 antagonized the veratridine-induced inhibition of tyrosine uptake, suggesting an interference with the depolarization process. The inhibitory effects of dopamine and tyramine at pH 7.2 were also antagonized at pH 6.2. In contrast to the effects of pH 6.2 buffer, incubation at pH 6.6 does not markedly alter responses to the various drugs. The results suggest that, although basal dopamine synthesis rates can be increased by lowering the pH, synaptosomal regulatory properties are significantly altered as the pH is lowered below 6.6.  相似文献   

3.
The dopamine (DA) uptake system in mammalian nerve terminals was studied by measuring the unidirectional influx of tritiated DA into synaptosomes prepared from rat caudate nucleus. Two distinct time-dependent components of DA uptake were observed. The principal component was saturable with respect to DA concentration, required both external Na and Cl, and was competitively blocked by micromolar concentrations of the psychotropic agents cocaine, benztropine, nomifensine, amphetamine, and methamphetamine. This principal component of uptake has the properties expected for a carrier-mediated transport system. The second component, which accounted for about 10-30% of the DA uptake at 2 microM DA, was not saturable, and was independent of external Na, Cl, and blockers of the carrier-mediated system. The saturable, Na-dependent component had an apparent Km(DA) of about 0.5 microM. The dependence of DA uptake on external Na was sigmoid [Hill coefficient = 2; Ka(Na) = 45 mM] whereas the dependence on Cl was best described by a rectangular hyperbola [Ka(Cl) = 15 mM]. Depolarizing conditions (elevated external K) reduced the rate of DA influx. The data are consistent with a carrier-mediated DA transport mechanism in which each DA molecule entering the nerve terminal via the carrier is accompanied by two or more Na ions and one Cl ion in a rheogenic process carrying one or more net positive charges into the cell. Net, concentrative accumulation of DA inside nerve terminals may be accomplished by utilizing the Na electrochemical gradient to drive DA against its electrochemical gradient via this carrier system.  相似文献   

4.
These studies were undertaken to test the hypothesis that alterations in phosphatidylinositol metabolism can modulate neurotransmitter release in the central nervous system. The effects of 1,2-diacylglycerols (DAGs) on dopamine release in the rat central nervous system were determined by measuring dopamine release from rat striatal synaptosomes in response to two DAGs (sn-1,2-dioctanoylglycerol and 1-oleoyl-2-acetylglycerol) that can activate protein kinase C and one DAG (deoxydioctanoylglycerol) that does not activate this kinase. Dioctanoylglycerol and 1-oleoyl-2-acetylglycerol, at a concentration of 50 micrograms/ml, stimulated the release of labeled dopamine from striatal synaptosomes by 35-50 and 17%, respectively. Dioctanoylglycerol-induced release was also demonstrated for endogenous dopamine. In contrast, deoxydioctanoylglycerol (50 micrograms/ml) did not stimulate dopamine release. Dioctanoylglycerol-induced dopamine release was independent of external calcium concentration, indicating a utilization of internal calcium stores. Dioctanoylglycerol (50 micrograms/ml) also produced a 38% increase in labeled serotonin release from striatal synaptosomes. The addition of dioctanoylglycerol to the striatal supernatant fraction increased protein kinase C activity. These results are consistent with the concept that an increase in phosphatidylinositol metabolism can stimulate neurotransmitter release in the central nervous system via an increase in DAG concentration. The data suggest an involvement of protein kinase C in the DAG-induced release, but other sites for DAG action are also possible.  相似文献   

5.
Abstract: Arachidonic acid (AA) markedly stimulated, in a dose-dependent manner, the spontaneous release of [3H]dopamine ([3H]DA) continuously synthesized from [3H]tyrosine in purified synaptosomes from the rat striatum. As estimated by simultaneous measurement of the rate of [3H]H2O formation (an index of [3H]tyrosine conversion into [3H]DOPA), the AA response was associated with a progressive and dose-dependent reduction of [3H]DA synthesis. In contrast to AA, arachidic acid, oleic acid, and the methyl ester of AA (all at 10−4 M ) did not modify [3H]DA release. The AA (3 × 10−5 M )-evoked release of [3H]DA was not affected by inhibiting AA metabolism, with either 5,8,11,14-eicosatetraynoic acid or metyrapone, suggesting that AA acts directly and not through one of its metabolites. AA also inhibited in a dose-dependent manner [3H]DA uptake into synaptosomes, with a complete blockade observed at 10−4 M . However, AA (10−4 M ) still stimulated [3H]DA spontaneous release in the presence of either nomifensine or other DA uptake inhibitors, indicating that AA both inhibits DA reuptake and facilitates its release process. Finally, the AA (10−4 M )-evoked release of [3H]DA was not affected by protein kinase A inhibitors (H-89 or Rp -8-Br-cAMPS) but was markedly reduced in the presence of protein kinase C inhibitors (Ro 31-7549 or chelerythrine).  相似文献   

6.
Abstract: In an attempt to clarify the mechanisms by which dopamine (DA) autoreceptor activation inhibits DA synthesis, the efficacy and potency of the D2 DA agonists bromocriptine, lisuride, and pergolide, and the D1,-D2 DA agonist apomorphine were studied in rat striatal synapto- somes, in which the rate of DA synthesis (formation of 14CO2 from l -[1–14C]tyrosine) was increased 103% by treating the animals from which the synaptosomes were obtained with reserpine (5 mg/kg i.p. twice, 24 and 2 h before they were killed), using the striatal total homogenate as the standard synaptosomal preparation. The increase in DA synthesis evoked by reserpine was additive with that produced by treatment of the synaptosomes with dibutyryl cyclic AMP, suggesting that, not a cyclic AMP-dependent, but possibly a Ca2+-dependent mechanism was involved. The DA agonists showed a concentration-dependent inhibition of DA synthesis in the control synaptosomes, which was antagonized by the selective D2 DA antagonist (-)-sulpiride. In the synaptosomes with increased rate of DA synthesis obtained from the rats treated with reserpine, the concentration-response curves of DA synthesis inhibition for the other DA agonists were shifted to the right, and the effect of bromocriptine was completely eliminated, whereas bromocriptine antagonized the effect of apomorphine. The increased rate of DA synthesis was not preserved in the striatal P1+ P2 fraction obtained from the reserpine-treated rats, but the effects of the DA agonists were still reduced to the same degree as those in the total homogenate. (-)-Sulpiride did not enhance DA synthesis in synaptosomes from the reserpine- treated rats. The results presented indicate that the reduced effect of the DA agonists in synaptosomes from the reserpine-treated rats was not due to endogenous DA occupying the DA autoreceptors. Because it is known from the literature that reserpine in vivo increases impulse activity in DA neurons and, as a result, increases the Ca2+ concentration, these results suggest that the effect of DA agonists was reduced because DA autoreceptors may normally control DA synthesis by decreasing the free intraneuronal Ca2+ concentration, and consequently, the Ca2+-dependent phosphorylation of tyrosine hydroxylase.  相似文献   

7.
By inhibiting aromatic L-amino-acid decarboxylase (EC 4.1.1.28) in rat brain striatal synaptosomes, we have been able to measure dihydroxyphenylalanine production via high performance liquid chromatography-electrochemical oxidation. This dihydroxyphenylalanine assay was compared to a standard radioisotopic assay of catecholamine synthesis (14CO2 production from L-[1-14C]tyrosine) in terms of (1) units of activity, (2) effects of known inhibitory and stimulatory agents, and (3) effects of the calcium chelator, EGTA. The units of activity in the dihydroxyphenylalanine assay were 40% greater than the units in the radioisotopic assay, indicating a mixing of labeled and endogenous tyrosine pools before conversion of the labeled tyrosine to labeled dihydroxyphenylalanine. The inhibition of synthesis produced by either 3-iodotyrosine or 3,4-dihydroxyphenylethylamine was similar in the two assays, as was the stimulation produced by 8-bromo cyclic AMP. The calcium chelator, EGTA, also activated synthesis to the same extent in the two assays, indicating that the increase observed in the radioisotopic assay is not an artifact of altered precursor specific activity. These data thus indicate the general utility of the synaptosomal dihydroxyphenylalanine synthesis assay, and also demonstrate the specific advantages of this assay for analyzing the effects of agents such as EGTA, which can alter tissue catecholamine precursor levels.  相似文献   

8.
1-Methyl-4-Phenylpyridinium Uptake by Human and Rat Striatal Synaptosomes   总被引:1,自引:0,他引:1  
1-Methyl-4-phenylpyridinium (MPP+) was taken up into human and rat striatal synaptosomes by a saturable system, similar to that for dopamine, with Km values of 0.24 and 0.17 microM, respectively, and similar Vmax values. Uptake of MPP+ and dopamine into both rat and human synaptosomes was inhibited by cocaine and amfonelic acid, with the latter being five to 10 times more potent than the former. MPP+ uptake was potently inhibited by dopamine in preparations from both species. In general, the characteristics of human and rat synaptosomal MPP+ uptake were very similar It seems unlikely that species differences in toxicity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine or reaction to dopamine uptake blockers stem from this system.  相似文献   

9.
The characteristics of the release of endogenous dopamine and noradrenaline from rat brain synaptosomes were studied using HPLC with an electrochemical detector. The spontaneous release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. Also, the high-K+ (30 mM)-evoked release of dopamine and noradrenaline was inhibited by approximately 50-60% in a Ca2(+)-free medium or a 100 microM La3(+)-containing medium. From these results, the ratio of the Ca2(+)-dependent component to the total release of noradrenaline seemed to be similar to that of dopamine. On the other hand, 20 microM La3+ or 1 microM diltiazem inhibited both the spontaneous and 30 mM K(+)-evoked release of dopamine by approximately 50-60% but inhibited neither the spontaneous nor the 30 mM K(+)-evoked release of noradrenaline. The K(+)-evoked rise in intrasynaptosomal Ca2+ concentration was mostly blocked in Ca2(+)-free medium or 100 microM La3(+)-containing medium but was only partially blocked by 20 microM La3+ or 1 microM diltiazem. These data indicate alternative possibilities in that the Ca2(+)-dependent release of noradrenaline might be less sensitive to a change of intracellular Ca2+ concentration than that of dopamine and that the calcium channels directly involved in the noradrenaline release may be more resistant to diltiazem and La3+ than those involved in the dopamine release.  相似文献   

10.
Abstract: Nicotine has been shown to stimulate neurotransmitter release from brain tissue by acting on presynaptic receptors. In this study, the ability of nicotine pretreatment to produce functional desensitization was investigated in rat striatal synaptosomes in which the release of [3H]dopamine was measured with an in vitro superfusion system. Pretreatment of synaptosomes with low concentrations of l -nicotine resulted in a decrease in the ability of a subsequent nicotine challenge to evoke [3H]dopamine release. The IC50 for nicotine-induced desensitization was found to be 12 n M with a maximum inhibition of >90% at 300 n M . Nicotine pretreatment did not affect the release evoked by amphetamine, veratridine, or 15 m M K+. The onset of nicotine-induced desensitization occurred with a t 1/2 of 43 s at 30 n M nicotine. The temperature dependence of onset yielded a Q10 of 1.2.Recovery from desensitization was slower ( t 1/2 = 4.33 min), and both the onset and recovery appeared to follow a single first-order process. Several intermittent schedules of nicotine treatment were found to be effective at inducing and maintaining desensitization. The results of this study show that nonstimulating concentrations of nicotine can produce a complete functional desensitization of subsequent nicotine-induced neurotransmitter release.  相似文献   

11.
Release of preaccumulated, tritium-labeled dopamine ([3H]DA) from preparations of isolated nerve terminals (synaptosomes) of rat median eminence (ME) and corpus striatum (CS) was examined over short time intervals (1-20 s). In both preparations, basal efflux of [3H]DA was linear with time. Depolarization with high K+ resulted in an initial rapid release of [3H]DA which stabilized by 20 s, whereas veratridine elicited an increased rate of release over basal levels that was linear over the first 20 s. The calculated rate constants of release for both the initial phase of K+- and the veratridine-stimulated release were approximately threefold greater in CS than in ME synaptosomes. The major component of the high K+-induced release of [3H]DA from both synaptosome preparations increased as a graded function of [Ca2+]o. However, a smaller component, independent of external Ca2+, existed in both ME and CS synaptosomes. Increasing the [Mg2+] in the external solution resulted in a right shift of both the [K+]o and the [Ca2+]o dose-response curves, consistent with actions of Mg2+ on screening surface membrane charges and blocking voltage-dependent Ca2+ channels. In all studies, steady-state uptake of the [3H]DA was about twofold greater into CS than into ME synaptosomes. Moreover, the fraction of incorporated [3H]DA released by stimulation from the CS was much greater than that released from ME synaptosomes. These data are consistent with differences between these two types of dopaminergic terminals with respect to packaging and/or distribution of the accumulated neurotransmitter in intraneuronal pools, as well as marked differences in the apparent kinetics of DA release.  相似文献   

12.
The effects of different fragments of cholecystokinin (CCK) on dopamine synthesis were studied in synaptosomal preparations from the striatum, substantia nigra, and frontal cortex. In striatal synaptosomes, dopamine synthesis rate measured by dopamine accumulation was 12.5% lower than that measured by 3,4-dihydroxyphenylalanine (DOPA) accumulation; however, K+-accelerated synthesis was the same for both methods. Synthesis rate was independent of exogenous tyrosine levels. In the three regions studied, the combined stimulatory effects of 8-Br-cyclic AMP and high K+ were additive. CCK-5, CCK-3, CCK-27-33, and CCK-8 (sulphated) enhanced synthesis, CCK-5 being the most potent fragment. The nonsulphated octapeptide had no effect. In all three regions, CCK-5 and high K+ had an additive effect on dopamine synthesis; CCK-5 and 8-Br-cyclic AMP together produced the same enhancement of synthesis as CCK-5 alone. CCK-5 produced similar dose-dependent increases in dopamine synthesis and cyclic AMP accumulation in striatal synaptosomes, and both effects were blocked by the CCK antagonist proglumide.  相似文献   

13.
Dopamine synthesis rate was measured in striatal synaptosomes. Removal of Na+ increased synthesis rate; this was blocked in Ca2+-free medium and by addition of the Ca2+/calmodulin inhibitor N-6-aminohexyl-5-chloro-1-naphthalenesulfonamide (W7). The increase in dopamine synthesis rate caused by the addition of the phorbol ester 12-O-tetradecanoylphorboI-13-acetate (TPA) was blocked by the protein kinase C inhibitor polymyxin B. K+-stimulated synthesis was unchanged in Ca2+-free medium or by addition of W7; it was blocked by polymyxin B. The effect of 50 mM K+ was additive with that of 8-Br cyclic AMP and of Na+ removal; the combined effect of 50 mM K+ and TPA was no greater than that of either alone. These results suggest that stimulation of dopamine synthesis in striatal synaptosomes by 50 mM K+ is mediated by protein kinase C.  相似文献   

14.
Tryptophan uptake, hydroxylation, and decarboxylation in isolated synaptosomes were studied to assess how their properties may determine the rate of serotonin synthesis in the presynaptic nerve terminals of the brain. Simultaneous measurements of the rates of uptake, hydroxylation, and decarboxylation in the presence and absence of various inhibitors showed that tryptophan hydroxylase is rate-limiting for serotonin synthesis in this model system. There was significant direct decarboxylation of tryptophan to tryptamine. Measurement of tryptophan hydroxylase flux with varying internal concentrations of tryptophan allowed the determination of the Km of tryptophan hydroxylase in synaptosomes for tryptophan of 120 +/- 15 microM. Depolarisation of synaptosomes with veratridine caused both a reduction in the internal tryptophan concentration and an apparent activation of tryptophan hydroxylase. This activation did not occur in the absence of Ca2+ or in the presence of trifluoperazine. Synaptosomal serotonin synthesis and brain stem-soluble tryptophan hydroxylase were inhibited by low concentrations of noradrenaline or dopamine. Dibutyryl cyclic AMP, glucagon, insulin, and vasopressin were observed to have no effect on tryptophan uptake or hydroxylation in synaptosomes.  相似文献   

15.
Methylmalonate is accumulated in the genetically linked deficiency of methylmalonyl-CoA mutase (methylmalonic acidemia). In this condition is also observed an elevation of the glycine levels. This communication reports the inhibition of the synaptosomal glycine uptake by methylmalonate, when present at similar concentrations to those found in methylmalonic acidemia. This inhibition could be responsible, at least in part, for the neurological damage characteristic of this disease, by increasing the glycine levels in the synaptic cleft and thus interfering with the normal function of the inhibitory glycinergic synapsis in the spinal cord.  相似文献   

16.
Hypoxia induces alterations of central monoaminergic transmission and of behavior. We studied the effect of hypoxia on adult and newborn rats to obtain more information about long-lasting changes of dopamine (DA) transmission caused by neonatal hypoxia. One single exposure of adult rats to hypoxia leads to short-term alterations of DA uptake: decreased affinity of the uptake carrier to DA (Km, 269.5% versus control) and a sharp increase of Vmax up to 301.4% resulting in an increase of total uptake of DA into the striatum synaptosomes. The K+-evoked DA release decreased to 69.5%. After 1 week of recovery all parameters are normalized. Chronic postnatal hypoxia (postnatal day 2-11) caused long-lasting changes of DA release and uptake opposite to those observed in adult rats. Three months after hypoxia, the K+-stimulated DA release was enhanced (132% of control), and the uptake was reduced due to decreased affinity of the uptake carrier system for the substrate (Km, 187% of control value). In conclusion, the alterations observed after chronic postnatal hypoxia reflect special adaptive processes that are related to the high plasticity of the immature neonatal brain and contribute to an increased DA function in the nigrostriatal system.  相似文献   

17.
Abstract: The influence of putrescine, spermidine, spermine, and some aliphatic α,ω-diamines on the uptake of neurotransmitters by rat forebrain synaptosomes was investigated. Choline uptake was most effectively inhibited by spermine (IC50= 0.22 m M ), less so by spermidine (IC50= 4.0 m M ), but not by putrescine (IC50 > 100 m M ). At 10 m M, 1,3-diaminopropane, cadaverine, and 1,8-diaminooctane all inhibited choline uptake by 50% or more. Spermine and spermidine inhibited the uptake of dopamine with IC50 values of 2.7 and 2.2 m M , respectively. Putrescine was only slightly inhibitory (IC50= 17.3 m M ) and the other diamines were inactive. The uptake of γ-aminobutyrate (GABA) was only slightly inhibited (15–40%) by the polyamines at 10 m M . With the exception of inhibition of glycine uptake by 1,8-diaminooctane (60%) and of glutamate uptake by cadaverine (35%) none of the polyamines, tested at 10 m M , affected the uptake of adenosine, glutamate, and glycine significantly. A possible modulatory role for polyamines in synaptic transmission through interaction by negatively charged groups of the synaptic membrane with the polycationic compounds is discussed.  相似文献   

18.
Abstract: In rat striatal membranes, NaCl induced a twofold increase in the maximal number of cocaine binding sites but did not alter the affinity of these sites for cocaine. This effect was concentration-dependent, specific to sodium ions, and occurred in membranes prepared from corpus striatum but not from other brain regions. Lesions with 6-hydroxydopamine but not with kainic acid eliminated the sodium-induced increase in binding and produced a decrease in the Bmax of binding measured in the presence of NaCl. The capacity of a series of drugs to interfere with Na+–dependent cocaine binding correlated well with their capacity to inhibit [3H]dopamine uptake into rat striatal synaptosomes. The present results suggest that Na+–dependent cocaine binding sites are localized presynaptically on dopaminergic nerve terminals in corpus striatum, and may be related to dopamine uptake sites.  相似文献   

19.
Using a sensitive perfusion system we have studied the nicotine-induced release of [3H]dopamine ([( 3H]DA) from striatal synaptosomes. Nicotine-evoked release was concentration dependent with an EC50 of 3.8 microM. The response to 1 microM nicotine was comparable to that to 16 mM K+; 10 microM veratridine evoked a larger response. All three stimuli were Ca2+ dependent but only the response to veratridine was blocked by tetrodotoxin. Repetitive stimulations by 1 microM (-)-nicotine (100 microliters) at 30-min intervals resulted in similar levels of [3H]DA release; higher concentrations of (-)-nicotine resulted in an attenuation of the response particularly following the third stimulation. This may reflect desensitisation or tachyphylaxis of the presynaptic nicotinic receptor. The action of nicotine was markedly stereoselective: a 100-fold higher concentration of (+)-nicotine was necessary to evoke the same level of response as 1 microM (-)-nicotine. It is proposed that these presynaptic nicotinic receptors on striatal terminals are equivalent to high-affinity nicotine binding sites described in mammalian brain.  相似文献   

20.
Rat Brain Synaptosomes Prepared by Phase Partition   总被引:1,自引:1,他引:1  
Synaptosomes from rat forebrain can easily be isolated by combining centrifugation with partition in an aqueous two-phase system composed of dextran T500 and polyethylene glycol 4000 in which synaptosomes have an extreme affinity for the upper phase. The fraction thus obtained has been characterized by electron microscopy and biochemical markers for synaptosomes and some other cell components. The contamination by microsomes, free mitochondria, and myelin was 4.4, 3.2, and 0.1%, respectively. The morphometric analysis of the electron micrographs shows that greater than 60% of the structures are synaptosomes. This preparation of the isolation procedure is remarkably short (less than 1 h), formance as assayed by their respiratory activities and ATP level in the absence and presence of depolarizing agents. Synaptosomes prepared by phase partition release the neurotransmitter glutamate in a Ca2(+)-dependent manner. The duration of the isolation procedure is remarkably short (less than 1 h), no ultracentrifuge is required, and the method can be applied for small- or large-scale preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号