首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
NF-kappaB activation in response to UV irradiation of HeLa cells or of primary human skin fibroblasts occurs with two overlapping kinetics but totally different mechanisms. Although both mechanisms involve induced dissociation of NF-kappaB from IkappaBalpha and degradation of IkappaBalpha, targeting for degradation and signaling are different. Early IkappaBalpha degradation at 30 min to approximately 6 h is not initiated by UV-induced DNA damage. It does not require IkappaB kinase (IKK), as shown by introduction of a dominant-negative kinase subunit, and does not depend on the presence of the phosphorylatable substrate, IkappaBalpha, carrying serines at positions 32 and 36. Induced IkappaBalpha degradation requires, however, intact N- (positions 1-36) and C-terminal (positions 277-287) sequences. IkappaB degradation and NF-kappaB activation at late time points, 15-20 h after UV irradiation, is mediated through DNA damage-induced cleavage of IL-1alpha precursor, release of IL-1alpha and autocrine/paracrine action of IL-1alpha. Late-induced IkappaBalpha requires the presence of Ser32 and Ser36. The late mechanism indicates the existence of signal transfer from photoproducts in the nucleus to the cytoplasm. The release of the 'alarmone' IL-1alpha may account for some of the systemic effects of sunlight exposure.  相似文献   

3.
4.
To examine the role of mitogen-activated protein kinase and nuclear factor kappa B (NF-kappaB) pathways on osteoclast survival and activation, we constructed adenovirus vectors carrying various mutants of signaling molecules: dominant negative Ras (Ras(DN)), constitutively active MEK1 (MEK(CA)), dominant negative IkappaB kinase 2 (IKK(DN)), and constitutively active IKK2 (IKK(CA)). Inhibiting ERK activity by Ras(DN) overexpression rapidly induced the apoptosis of osteoclast-like cells (OCLs) formed in vitro, whereas ERK activation after the introduction of MEK(CA) remarkably lengthened their survival by preventing spontaneous apoptosis. Neither inhibition nor activation of ERK affected the bone-resorbing activity of OCLs. Inhibition of NF-kappaB pathway with IKK(DN) virus suppressed the pit-forming activity of OCLs and NF-kappaB activation by IKK(CA) expression upregulated it without affecting their survival. Interleukin 1alpha (IL-1alpha) strongly induced ERK activation as well as NF-kappaB activation. Ras(DN) virus partially inhibited ERK activation, and OCL survival promoted by IL-1alpha. Inhibiting NF-kappaB activation by IKK(DN) virus significantly suppressed the pit-forming activity enhanced by IL-1alpha. These results indicate that ERK and NF-kappaB regulate different aspects of osteoclast activation: ERK is responsible for osteoclast survival, whereas NF-kappaB regulates osteoclast activation for bone resorption.  相似文献   

5.
Bacterial lipopolysaccharide (LPS) is a powerful activator of the innate immune system. Exposure to LPS induces an inflammatory reaction in the lung mediated primarily by human blood monocytes and alveolar macrophages, which release an array of inflammatory chemokines and cytokines including IL-8, TNF-alpha, IL-1beta, and IL-6. The signaling mechanisms utilized by LPS to stimulate the release of cytokines and chemokines are still incompletely understood. Pretreatment with the protein tyrosine kinase-specific inhibitors genistein and herbimycin A effectively blocked LPS-induced NF-kappaB activation as well as IL-8 gene expression in human peripheral blood monocytes. However, when genistein was added 2 min after the addition of LPS, no inhibition was observed. Utilizing a coimmunoprecipitation assay, we further showed that LPS-stimulated tyrosine phosphorylation of Toll-like receptor 4 (TLR4) may be involved in downstream signaling events induced by LPS. These findings provide evidence that LPS-induced NF-kappaB activation and IL-8 gene expression use a signaling pathway requiring protein tyrosine kinase and that such regulation may occur through tyrosine phosphorylation of TLR4.  相似文献   

6.
低氧激活巨噬细胞内NF-κB 信号转导通路的机制   总被引:3,自引:0,他引:3  
Zhang CP  Xie YZ  Chen P  Hong X  Xiao ZH  Ma Y  Lu YD 《生理学报》2004,56(4):515-520
  相似文献   

7.
8.
Interleukin-1 (IL-1) mediates numerous host responses through rapid activation of nuclear factor-kappaB (NF-kappaB), but signal pathways leading to the NF-kappaB activation appear to be complicated and multiplex. We propose a novel regulatory system for NF-kappaB activation by the extracellular signal-related kinase (ERK) pathway. In a human glioblastoma cell line, T98G, IL-1-induced NF-kappaB activation was significantly augmented by the pretreatment of a specific MEK inhibitor, PD98059. In contrast, ectopic expression of a constitutive activated form of Raf (v-Raf) reduced IL-1-induced NF-kappaB activation, and this inhibition was completely reversed by PD98059. Interestingly, PD98059 sustained IL-1-induced NF-kappaB DNA binding activity by an electrophoretic mobility shift assay and also IkappaBalpha degradation, presumably by augmenting and sustaining the proteasome activation. Concomitantly, two NF-kappaB dependent genes, A20 and IkappaBalpha expression were prolonged with PD98059. These data suggested that MEK-ERK pathway exerts a regulatory effect on NF-kappaB activation, providing a novel insight on the role of MEK-ERK pathway.  相似文献   

9.
Astaxanthin, a carotenoid without vitamin A activity, has shown anti-oxidant and anti-inflammatory activities; however, its molecular action and mechanism have not been elucidated. We examined in vitro and in vivo regulatory function of astaxanthin on production of nitric oxide (NO) and prostaglandin E2 (PGE2) as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). Astaxanthin inhibited the expression or formation production of these proinflammatory mediators and cytokines in both lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary macrophages. Astaxanthin also suppressed the serum levels of NO, PGE2, TNF-alpha, and IL-1beta in LPS-administrated mice, and inhibited NF-kappaB activation as well as iNOS promoter activity in RAW264.7 cells stimulated with LPS. This compound directly inhibited the intracellular accumulation of reactive oxygen species in LPS-stimulated RAW264.7 cells as well as H2O2-induced NF-kappaB activation and iNOS expression. Moreover, astaxanthin blocked nuclear translocation of NF-kappaB p65 subunit and I(kappa)B(alpha) degradation, which correlated with its inhibitory effect on I(kappa)B kinase (IKK) activity. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking NF-kappaB activation and as a consequent suppression of IKK activity and I(kappa)B-alpha degradation.  相似文献   

10.
11.
Interleukin-1 (IL-1) mediates numerous host responses through the rapid activation of nuclear factor-kappa B (NF-kappa B), but the signal pathways leading to NF-kappa B activation are regulated at multiple stages. Here, we propose a novel regulatory system for IL-1-induced NF-kappa B activation by a tyrosine kinase, c-Src. The kinase activity of c-Src increases in an IL-1-dependent manner and the ectopic expression of c-Src augments IL-1-induced NF-kappa B activation, suggesting the involvement of c-Src in IL-1 signaling. However, a Src family inhibitor, PP2 failed to inhibit IL-1-induced NF-kappa B activation, and the expression of a c-Src mutant lacking kinase activity (c-Src KD) augmented IL-1-induced NF-kappa B activation as well as wild type c-Src, indicating that the tyrosine kinase activity is not required for IL-1-induced NF-kappa B activation. Furthermore, a physiological interaction between c-Src and I kappa B kinase gamma (IKK gamma) was observed, implying the involvement of c-Src in the IKK-complex. While c-Src augmented IL-1-induced IKK activation independent of its kinase activity, the region comprising amino acids 361-440 in the c-Src kinase domain are required for NF-kappa B activation. The same region of c-Src is also required for IL-1-induced IKK activation and the association with IKK gamma. Taken together, our results suggest that c-Src plays a critical role in IL-1-induced NF-kappa B activation through the IKK complex.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Interleukin-beta (IL-1beta) was found to induce inflammatory responses in the airways, which exerted a potent stimulus for PG synthesis. This study was to determine the mechanisms of IL-1beta-enhanced cyclooxygenase (COX)-2 expression associated with PGE(2) synthesis in tracheal smooth muscle cells (TSMCs). IL-1beta markedly increased COX-2 expression and PGE(2) formation in a time- and concentration-dependent manner in TSMCs. Both COX-2 expression and PGE(2) formation in response to IL-1beta were attenuated by a tyrosine kinase inhibitor, genistein, a phosphatidylcholine-phospholipase C inhibitor, D609, a phosphatidylinositol-phospholipase C inhibitor, U73122, protein kinase C inhibitors, GF109203X and staurosporine, removal of Ca(2+) by addition of BAPTA/AM plus EGTA, and phosphatidylinositol 3-kinase (PI3-K) inhibitors, LY294002 and wortmannin. IL-1beta-induced activation of NF-kappaB correlated with the degradation of IkappaB-alpha in TSMCs. IL-1beta-induced NF-kappaB activation, COX-2 expression, and PGE(2) synthesis were inhibited by the dominant negative mutants of NIK and IKK-alpha, but not by IKK-beta. IL-1beta-induced COX-2 expression and PGE(2) synthesis were completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 inhibitor), but these two inhibitors had no effect on IL-1beta-induced NF-kappaB activation, indicating that activation of p42/44 and p38 MAPK and NF-kappaB signalling pathways were independently required for these responses. These findings suggest that the increased expression of COX-2 correlates with the release of PGE(2) from IL-1beta-challenged TSMCs, at least in part, independently mediated through MAPKs and NF-kappaB signalling pathways in canine TSMCs. IL-1beta-mediated responses were modulated by PLC, Ca(2+), PKC, tyrosine kinase, and PI3-K in these cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号