首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
免疫刺激复合物疫苗制备及其对小鼠免疫功能的影响   总被引:2,自引:0,他引:2  
确定了免疫刺激复合物(ISCOM)疫苗的安全有效剂量及其对小鼠免疫功能的影响。选取体重25 g左右的昆明小白鼠60只,分为12组,每组5只,腹腔分别注射不同剂量(5-200μg)的ISCOM疫苗,观察小鼠健康状态。选取体重28 g左右的昆明小白鼠60只,分为4组,分别在腹腔注射相同剂量的灭菌生理盐水,Lipase+生理盐水,空ISCOM,Lipase+ISCOM疫苗,利用间接ELISA检测血清中特异性抗体效价。结果表明,当注射剂量为5-25μg/只时,小鼠无任何异常症状。免疫后8 d,小鼠血清特异性抗体效价(log2)可以达到10.5,显著高于对照组。因此,ISCOM疫苗能有效引起小鼠的免疫反应。  相似文献   

2.
Han LQ  Li HJ  Wang YY  Wang LF  Yang GQ  Wang YL  Yang GY 《遗传》2012,34(3):335-341
为了研究小鼠不同泌乳期乳脂肪合成相关基因的表达规律,文章采用荧光定量PCR检测了小鼠乳腺中与脂肪合成和分泌相关20个基因的mRNA相对表达丰度和表达差异。结果表明,在乳腺中脂蛋白脂酶(LPL)、乙酰辅酶A羧化酶(ACACA)、硬脂酰辅酶A去饱和酶(SCD)、黄嘌呤脱氢酶(XDH)、嗜乳脂蛋白(BTN)、脂肪酸分化蛋白(ADFP)基因都具有高mRNA表达丰度(表达丰度>5%),脂肪酸转运体(CD36)、脂肪酸合成酶(FASN)、1-酰基甘油磷酸酰基转移酶(AGPAT6)和甘油酰基转移酶(DGAT)基因具有中等mRNA表达丰度(5%>表达丰度>1%),与妊娠期乳腺基因的mRNA表达相比,在泌乳期这些基因的mRNA表达均有显著上调(P<0.05),并且ACACA、SCD、FASN、AGPAT6和DGAT等脂肪合成酶基因的表达在泌乳中期(12 d)最高,而在泌乳初期(6 d)和泌乳末期(18 d)较低,呈现低-高-低的表达模式。转录因子固醇调节元件结合蛋白(SREBF)基因在泌乳开始时mRNA表达增加,在泌乳中期(12 d)表达有10倍上调,其变化规律与脂肪合成酶基因的表达模式相同,说明SREBF基因在小鼠乳腺脂肪合成酶基因的表达调控中发挥重要调节作用。  相似文献   

3.
为了研究小鼠不同泌乳期乳脂肪合成相关基因的表达规律, 文章采用荧光定量PCR检测了小鼠乳腺中与脂肪合成和分泌相关20个基因的mRNA相对表达丰度和表达差异。结果表明, 在乳腺中脂蛋白脂酶(LPL)、乙酰辅酶A羧化酶(ACACA)、硬脂酰辅酶A去饱和酶(SCD)、黄嘌呤脱氢酶(XDH)、嗜乳脂蛋白(BTN)、脂肪酸分化蛋白(ADFP)基因都具有高mRNA表达丰度 (表达丰度>5%), 脂肪酸转运体(CD36)、脂肪酸合成酶(FASN)、1-酰基甘油磷酸酰基转移酶(AGPAT6)和甘油酰基转移酶(DGAT)基因具有中等mRNA表达丰度(5%>表达丰度>1%), 与妊娠期乳腺基因的mRNA表达相比, 在泌乳期这些基因的mRNA表达均有显著上调(P<0.05), 并且ACACA、SCD、FASN、AGPAT6和DGAT等脂肪合成酶基因的表达在泌乳中期(12 d)最高, 而在泌乳初期(6 d)和泌乳末期(18 d)较低, 呈现低-高-低的表达模式。转录因子固醇调节元件结合蛋白(SREBF)基因在泌乳开始时mRNA表达增加, 在泌乳中期(12 d)表达有10倍上调, 其变化规律与脂肪合成酶基因的表达模式相同, 说明SREBF基因在小鼠乳腺脂肪合成酶基因的表达调控中发挥重要调节作用。  相似文献   

4.
流感病毒基质蛋白(matrix protein,M)在病毒复制和毒力方面有重要作用.编码基质蛋白的M1基因和M2基因胞外域序列是A型流感病毒的保守序列,是研究具有交叉保护能力流感疫苗的候选基因.我们构建了真核表达质粒pCAGGSP7/M1和pCAGGSP7/M2,用质粒DNA免疫小鼠以观察其免疫原性.分别在M1DNA免疫2、3、4、5、6次或M2 DNA免疫4、5、6次7 d后,用致死量同源流感病毒A/PR/8攻击小鼠,通过检测小鼠血清抗体滴度、肺部病毒量和小鼠存活率来观察质粒DNA的保护效果.结果表明,随着免疫次数增加,M1 DNA免疫组在病毒攻击后小鼠存活率增高,而M2 DNA免疫组小鼠攻毒后全部死亡.说明M1 DNA多次免疫后能提供抗流感病毒的部分保护,M2 DNA没有免疫保护作用.  相似文献   

5.
探讨文昌鱼trp14 (thioredoxin-related protein of 14 kD)基因在文昌鱼早期发育阶段的时空表达模式及其免疫活性.利用整体原位杂交技术研究trp14基因在文昌鱼早期发育阶段的时空表达模式;通过半定量RT-PCR方法分析trp14基因在低温胁迫和免疫药物刺激下的mRNA表达变化.trp14基因在文昌鱼2 d幼虫的原始消化道表达,呈现时空特异的表达模式;低温可以增强trp14基因的表达,而免疫刺激药物LPS和LTA则降低trp14基因的表达量.文昌鱼trp14基因在胁迫条件下表达量发生变化,暗示其可能参与氧化压力变化引起的免疫反应.  相似文献   

6.
本文主要研究肾阳虚(kidney yang deficiency)小鼠血清睾酮及性腺雄激素受体基因的表达,旨在揭示淫羊藿苷(icariin)对肾阳虚症状的影响.雄性小鼠随机分为6组,除正常组注射生理盐水外,其余组注射氢化可的松15 d;再分别给大、中、小剂量组淫羊藿苷,阳性组甲基睾酮,正常组和模型对照组蒸馏水,灌胃15 d.放射免疫法测血清中睾酮含量; RT-PCR和免疫组织化学方法检测雄激素受体基因在性腺组织中mRNA和蛋白质的表达情况.对照组小鼠平均体重最轻,与正常组比较差异显著(P<0.05).对照组小鼠血清睾酮的含量显著低于正常组(P<0.05);大、中剂量给药组,阳性组睾酮与正常组相比差异不显著(P>0.05);性腺组织中,对照组雄激素受体和mRNA比正常组表达量低,差异显著(P<0.05);中、小剂量给药组,阳性组雄激素受体和mRNA与正常组相比差异不显著(P>0.05). 结果表明,肾阳虚小鼠血清睾酮含量,性腺雄激素受体mRNA和蛋白质的表达与正常组相比均有所下降,淫羊藿苷能够抑制其下降,缓解肾阳虚症状.  相似文献   

7.
老龄小鼠卵母细胞发育过程中组蛋白乙酰化修饰的改变   总被引:1,自引:0,他引:1  
分别取年轻C57/B6雌性小鼠(3-4周龄)与老龄C57/B6雌性小鼠(40-42周龄)不同发育时期的卵母细胞,利用免疫荧光技术观察其组蛋白不同赖氨酸位点乙酰化的变化,并用RT-PCR法检测年轻小鼠与老龄小鼠卵母细胞不同发育时期Hdac1与Hdac3(组蛋白去乙酰化酶)mRNA的相对表达量。结果显示:(1)年轻小鼠和老龄小鼠卵母细胞组蛋白H4/K12、H4/K16、H4/K5及H3/K14的乙酰化水平均随发育进程逐渐升高,在完全生长期乙酰化水平达到峰值,至MⅡ期,除H4/K12外,其它三个位点的乙酰化全部消失;与年轻小鼠相比,完全生长期时老龄小鼠卵母细胞组蛋白乙酰化水平较低;(2)在完全生长期之前,年轻小鼠和老龄小鼠卵中Hdac-1与Hdac-3 mRNA的表达量呈逐渐降低趋势,但老龄小鼠在MⅡ期有所升高。与年轻小鼠相比,老龄小鼠完全生长期前各时期卵母细胞中Hdac1 mRNA的表达量均极显著降低(P<0.01);而Hdac3 mRNA的表达量二者之间无显著差异。结果表明:老龄小鼠卵母细胞中组蛋白乙酰化和组蛋白去乙酰化酶表达出现了异常变化。  相似文献   

8.
本文旨在探讨分子佐剂C3d3与hCGβ融合在基因免疫中增强抗hCGβ体液免疫效应的机制。分别用质粒pCMV4-hCGB-C3d3、pCMV4-hCGβ和pCMV4免疫BALB/c小鼠,间接ELISA法检测免疫小鼠外周血IgG/IgA类抗hCGβ抗体水平;ELISPOT分析免疫鼠脾脏组织IgG/IgA类抗体分泌细胞水平(ASC);RT-PCR分析免疫鼠脾脏B细胞趋化因子受体表达,RT-PCR和FCM分析CXCR4表达水平;RT-PCR和ELISA检测脾脏组织CXCL12表达水平。结果显示,pCMV4- hCGβ-C3d3免疫组外周血IgG类抗hCGβ抗体水平明显高于pCMV4-hCGβ免疫组;而IgA类抗hCGβ抗体水平在两组间无明显差异。pCMV4-hCGβ-C3d3免疫组脾脏组织IgG类ASCs水平明显高于pCMV4-hCGβ组;两组间IgA类ASCs水平无明显差异。经pCMV4-hCGB、pCMV4-hCGβ- C3d3免疫鼠脾脏B细胞CXCR4表达明显高于对照组;且pCMV4-hCGβ-C3d3组明显高于pCMV4-hCGβ免疫组。CXCR4~ 细胞与ASCs呈正相关,r=0.966,(P<0.05)。pCMV4-hCGβ-C3d3和pCMV4-hCGβ组脾脏组织CXC L12表达均显著高于对照组。结果表明,分子佐剂C3d3与hCGβ基因融合,在基因免疫小鼠后能够显著升调节脾脏ASCs CXCR4表达,从而可能增强抗hcGβ基因疫苗的体液免疫效应。  相似文献   

9.
目的:探讨冻融小鼠卵巢同种异体移植后细胞凋亡及血管内皮生长因子表达的变化及意义。方法:收集C57BL/6j雌鼠和BALB/c雄鼠杂交后F1代4周龄小鼠卵巢,慢冻速融后移植至杂交后F1代8~12周雄鼠的肾被膜下,分别于移植后1d(24h)、2d(48h)和7d回收移植物,将冻融以及移植后不同时间段的卵巢组织进行HE染色、全卵巢卵泡计数、电镜观察、免疫组织化学分析细胞凋亡及RT-PCR检测VEGF基因表达。结果:冻融小鼠卵巢移植后随着时间的推移、各级卵泡数和卵泡存活率逐渐下降;移植后48h内细胞凋亡指数最高;电镜观察发现小鼠卵巢组织移植后损伤主要发生在移植后48h内;移植后VEGF的表达有上升的趋势,至第7d仍维持较高水平;移植后48hVEGF120mRNA和VEGF188mRNA水平明显升高(P0.05),至7d下降恢复至移植前水平,而VEGF164mRNA水平移植后无明显变化(P0.05)。结论:小鼠卵巢组织移植后48h内细胞凋亡最为严重,移植后引起大量卵泡的丢失;在移植后血管化的过程中VEGFmRNA表达量增加,VEGF120mRNA和VEGF188mRNA可能参与卵巢移植后早期血管化过程。  相似文献   

10.
为了研究热应激对小鼠肝脏抗氧化功能及Keap1 (kelch-like ECH-associated protein- 1)/Nrf2(NF-E2-related factor 2)/ARE (antioxidant response element)通路相关基因表达的影响,选用30只8周龄雄性小鼠随机分成6组,每 d连续42 ℃热处理2 h,分别在热处理0 d(对照组)、1 d、2 d、4 d、8 d和12 d时观察肝脏组织形态学和免疫组织化学分析,另取一部分肝脏组织保存于-80 ℃用于后续荧光定量PCR实验,检测肝脏抗氧化指标及Keap1/Nrf2/ARE通路相关基因的表达.结果显示:小鼠的体表温度和直肠温度在热处理后都极显著高于热处理前.组织形态学观察发现,热处理导致小鼠肝脏组织充血和肝细胞水肿.小鼠肝脏氧化应激指标 MDA (malondialdehyde)含量在热处理第2 d较对照组显著升高,GSH (glutathione)含量、GSH-PX (glutathione peroxidase)活力和总SOD (superoxide dismutase)活力在第4 d和12 d都有升高.免疫组织化学发现,与对照组和第12 d组相比,Nrf2蛋白在第1 d,2 d,4 d,8 d表达明显,其中Nrf2蛋白在第4 d表达最为显著. 荧光定量RT PCR结果表明,与对照组比较Keap1基因的表达量从热处理第1 d开始显著降低,Nrf2基因的表达量在第4 d和12 d显著升高,HO-1 (Heme oxygenase-1)基因的表达量在第1 d显著升高,NQO1 (Quinone oxidoreductase)和GCLC (Glutamate cysteine ligase catalytic)基因的表达量在第1 d和4 d显著升高.上述结果表明,热应激引起了小鼠肝脏氧化损伤, Keap1/Nrf2/ARE通路可能参与了肝脏自身缓解热应激的过程.  相似文献   

11.
Lactation-dependent regulation of leptin expression in mouse mammary gland and parametrial adipose tissue was estimated by RT-PCR analysis for virgin, pregnant, lactating and post-lactating mice, and the serum and milk leptin levels of these mice were also determined by ELISA. Leptin gene expression in mammary gland as well as in adipose tissue was obviously detected before pregnancy, markedly decreased to 30-50% after parturition and kept at the low level during lactation period, and restored to the original level after weaning. The leptin concentration of milk collected just before weaning was about two-fold higher than that of the milk collected at mid-lactating stages. The serum leptin levels of the mid- and late-lactating mice were not significantly higher than those of non-pregnant mice. These results suggested that the lactation-induced down regulation of leptin was associated with autocrine/paracrine action of leptin in mammary and adipose tissues, and that the milk leptin, especially at the latter stages of lactation, was not only ascribed to diffusive transport from maternal blood stream, but also regional production and secretion by mammary epithelial cells. This possible production of leptin by mammary epithelial cells was further supported by the fact that leptin was expressed by cultured cells of mammary epithelial cell line, COMMA-1D, in a manner negatively dependent on the lactogenic hormones.  相似文献   

12.
The spatial, temporal, and hormonal pattern of expression of the β-casein gene is highly regulated and confined to the epithelial cells of the lactating mammary gland. Previous studies have shown that 1.7 kb of the bovine β-casein promoter were able to drive cell-specific and hormone-dependent expression to a mouse mammary cell line but failed to induce accurate expression to the mammary gland of transgenic mice. We investigated here the ability of 3.8 kb of the bovine β-casein gene promoter to drive the expression of the human growth hormone (hGH) gene in transgenic mice. A Northern blot analysis using total RNA obtained from different tissues of lactating and nonlactating females revealed the presence of hGH mRNA only in the mammary gland of lactating females. hGH mRNA was not detectable in the mammary gland of virgin females or males. A developmental analysis showed that hGH mRNA only peaked on parturition, resembling more closely the bovine β-casein temporal expression pattern rather than the murine. In situ hibridization studies performed on mammary gland sections showed that the cellular pattern of hGH expression was homogeneous in all lobules from heterozygous and homozygous transgenic mice. Silver grain counts on the tissue sections highly correlated with the hGH contents in the milk determined by radioimmunoassay (r = 0.996). Thus 3.8 kb of the bovine β-casein promoter direct a high-level expression of a reporter gene to the lactating mammary gland of transgenic mice in a tissue-specific and developmentally regulated manner. Mol. Reprod. Dev. 49:236–245, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Maternal-fetal IgGs transport occurs either prenatally or postnatally, which confers the newborns with passive immunity before their own immune system has matured. However, little is known about the mechanisms of postnatal IgGs passage in the mammary gland. To investigate how FcRn mediates the IgGs transport in the mammary gland, we first generated bFcRn and anti-HAV mAb transgenic mice, and then obtained HF transgenic mice expressing both transgenes by mating the above two strains. Transgene expression of bFcRn in the four lines was determined by qRT-PCR and western blot. We then localized the expression of bFcRn to the acinar epithelial cells in the mammary gland, and anti-HAV mAb was mainly detected in the acini with weak staining in the acinar epithelial cells. Human IgGs could be detected in both milk and serum of HF transgenic mice by western blot and ELISA. A significantly lower milk to serum ratio of human IgGs in HF mice compared with that of anti-HAV mAb mice, indicating that bFcRn could transport human IgGs across the milk-blood barrier from milk to serum during lactation in HF mice. While, there were no transport of murine IgGs, IgAs, or IgMs. These results provide understandings about the mechanisms of maternal-fetal immunity transfer in the mammary gland.  相似文献   

14.
Notch genes play a critical role in mammary gland growth, development and tumorigenesis. In the present study, we have quantitatively determined the levels and mRNA expression patterns of the Notch receptor genes, their ligands and target genes in the postnatal mouse mammary gland. The steady state levels of Notch3 mRNA are the highest among receptor genes, Jagged1 and Dll3 mRNA levels are the highest among ligand genes and Hey2 mRNA levels are highest among expressed Hes/Hey target genes analyzed during different stages of postnatal mammary gland development. Using an immunohistochemical approach with antibodies specific for each Notch receptor, we show that Notch proteins are temporally regulated in mammary epithelial cells during normal mammary gland development in the FVB/N mouse. The loss of ovarian hormones is associated with changes in the levels of Notch receptor mRNAs (Notch2 higher and Notch3 lower) and ligand mRNAs (Dll1 and Dll4 are higher, whereas Dll3 and Jagged1 are lower) in the mammary gland of ovariectomized mice compared to intact mice. These data define expression of the Notch ligand/receptor system throughout development of the mouse mammary gland and help set the stage for genetic analysis of Notch in this context.  相似文献   

15.
To study the role of glucocorticoid receptor (GR) at different stages of mammary gland development, mammary anlage were rescued from GR-/- mice by transplantation into the cleared fat pad of wild-type mice. In virgin mice, GR-/- outgrowths displayed abnormal ductal morphogenesis characterized by distended lumena, multiple layers of luminal epithelial cells in some regions along the ducts, and increased periductal stroma. In contrast, the loss of GR did not result in overt phenotypic changes in mammary gland development during pregnancy, lactation, and involution. Surprisingly, despite the known synergism between glucocorticoids and prolactin in the regulation of milk protein gene expression, whey acidic protein and beta-casein mRNA levels were unaffected in GR-/- transplants as compared with wild-type transplants. That mineralocorticoid receptor (MR) might compensate for the loss of GR was suggested by the detection of MR in the mammary gland at d 1 of lactation. This hypothesis was tested using explant cultures derived from the GR-/- transplants in which the mineralocorticoid fludrocortisone was able to synergistically induce beta-casein gene expression in the presence of prolactin and insulin. These studies suggest that MR may compensate for the absence of GR at some, but not at all stages of mammary gland development.  相似文献   

16.
Leptin is expressed in various tissues, suggesting that this protein is effective not only at the central nervous system level, but also peripherically. Recent studies have shown leptin production by other tissues, including the placenta, stomach, and mammary tissues, but there is no information available concerning expression levels of leptin in the rat mammary gland at different activation stages. We used semi-quantitative RT-PCR to investigate leptin mRNA expression levels in the rat mammary gland at different activity stages. Rat mammary gland samples were collected from virgin females and on days 6, 12, 18 of pregnancy and of lactation (six rats per group). The expression levels of leptin mRNA were measured by semi-quantitative RT-PCR, with β-actin as an internal control. Leptin mRNA was highly expressed in virgin rat mammary glands (leptin(IOD)/β-actin(IOD) = 1.60). It decreased gradually during pregnancy, being lowest at 18 days of pregnancy, when the levels were significantly lower than in virgin mammary tissue. Leptin mRNA increased slightly during lactation, but the difference was not significant. By day 18 of lactation, expression levels of leptin mRNA reached the same values as in virgin mammary tissue (leptin(IOD)/β-actin(IOD) = 1.65). Based on these results, we suggest that leptin has an important regulation role in rat mammary gland activation.  相似文献   

17.
Connexin26 (Cx26) is the major Cx protein expressed in the human mammary gland and is up-regulated during pregnancy while remaining elevated throughout lactation. It is currently unknown if patients with loss-of-function Cx26 mutations that result in hearing loss and skin diseases have a greater susceptibility to impaired breast development. To investigate if Cx26 plays a critical role in mammary gland development and differentiation, a novel Cx26 conditional knockout mouse model was generated by crossing Cx26fl/fl mice with mice expressing Cre under the β-Lactoglobulin promoter. Conditional knockdown of Cx26 from the mammary gland resulted in a dramatic reduction in detectable gap junction plaques confirmed by a significant ∼65-70% reduction in Cx26 mRNA and protein throughout parturition and lactation. Interestingly, this reduction was accompanied by a decrease in mammary gland Cx30 gap junction plaques at parturition, while no change was observed for Cx32 or Cx43. Whole mount, histological and immunofluorescent assessment of breast tissue revealed comparatively normal lobuloalveolar development following pregnancy in the conditionally knockdown mice compared to control mice. In addition, glands from genetically-modified mice were capable of producing milk proteins that were evident in the lumen of alveoli and ducts at similar levels as controls, suggesting normal gland function. Together, our results suggest that low levels of Cx26 expression throughout pregnancy and lactation, and not the physiological surge in Cx26, is sufficient for normal gland development and function.  相似文献   

18.
Beginning 15 days after ovariectomy (OVX), a high mammary tumor strain of SHN virgin mice at 3 months of age received subcutaneous injections of danazol (0.5 mug / 0.1 ml olive oil, once a day), perphenazine (0.05 mg / 0.1 ml saline, twice a day) or ovine prolactin (oPRL: 0.25 mg / 0.05 ml buffer, twice a day) for 3 days to modulate their circulating PRL levels. The serum PRL level was significantly decreased by danazol and increased by perphenazine compared to the intact and OVX-control groups. The expression of both transforming growth factor alpha (TGFalpha) mRNA and epidermal growth factor receptor (EGFR) mRNA in the mammary gland was increased by danazol. However, TGFalpha mRNA expression was decreased by perphenazine. Meanwhile, mammary end-bud formation was inhibited in danazol-treated group. All findings suggest that the manifestation of the effect of TGFalpha on mammary gland is rather suppressed by PRL, while mammary gland growth needs the participation of PRL; in other words, PRL is dominant to TGFalpha on the mammary gland growth. OVX resulted in a significant decrease of TGFalpha mRNA expression in the mammary gland despite of little alteration in serum PRL, confirming the previous observations. The similar trend was observed in ICR mice; however, the response to hormonal modulation is generally less susceptible than SHN mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号