首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Both intrinsic and acquired multidrug resistance play an important role in the insurgence of tuberculosis. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors that block the multidrug transporter and allow traditional antibiotics to be effective. MATERIALS AND METHODS: We have undertaken the inventory of the drug transporters subfamily, included in the major facilitator superfamily (MFS), encoded by the complete genome of Mycobacterium tuberculosis (MTB). These proteins were identified on the basis of their characteristic stretches of amino acids and transmembrane segments (TMS) number. CONCLUSIONS: Genome analysis and searches of homology between the identified transporters and proteins characterized in other organisms revealed 16 open reading frames encoding putative drug efflux pumps belonging to MFS. In the case of two of them, we also have demonstrated that they function as drug efflux proteins.  相似文献   

2.
结核病是由结核分枝杆菌(Mycobacterium tuberculosis,Mtb)引起的一种传染病。随着多药耐药和广泛耐药结核分枝杆菌的出现,结核病的治疗变得更为艰难。近年来研究发现,结核分枝杆菌存在外排泵是其耐药的原因之一,现已发现结核分枝杆菌的主要易化子超家族(major facilitator superfamily,MFS)、三磷酸腺苷(adenosine-triphosphate,ATP)结合盒超家族(ATP-Binding Cassette,ABC)、耐受小节分裂区家族(resistance-nodulation-division,RND)和小耐多药性家族(small multidrug resistance,SMR)外排泵。但是人们对结核分枝杆菌外排泵介导的耐药现象认识不足,仍缺乏从新药发现角度研发外排泵抑制剂的研究。本文拟对结核分枝杆菌的ABC、MFS、RND和SMR外排泵的结构和功能,以及结核分枝杆菌外排泵抑制剂的研究进展进行综述。  相似文献   

3.
Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well as nonmycobacteria are intrinsically resistant. The role of acidic pH in PZA action and the basis for the unique PZA susceptibility of M. tuberculosis are unknown. We found that in M. tuberculosis, acidic pH enhanced the intracellular accumulation of pyrazinoic acid (POA), the active derivative of PZA, after conversion of PZA by pyrazinamidase. In contrast, at neutral or alkaline pH, POA was mainly found outside M. tuberculosis cells. PZA-resistant M. tuberculosis complex organisms did not convert PZA into POA. Unlike M. tuberculosis, intrinsically PZA-resistant M. smegmatis converted PZA into POA, but it did not accumulate POA even at an acidic pH, due to a very active POA efflux mechanism. We propose that a deficient POA efflux mechanism underlies the unique susceptibility of M. tuberculosis to PZA and that the natural PZA resistance of M. smegmatis is due to a highly active efflux pump. These findings may have implications with regard to the design of new antimycobacterial drugs.  相似文献   

4.
结核分枝杆菌基因组学与基因组进化   总被引:1,自引:0,他引:1  
在后基因组时代,特别是在新的测序理论和设备大发展的背景下,一些重大传染性致病微生物基因组序列正在被逐一测定,并且随后的基因功能注释,蛋白质三维结构重建等工作也正在开展,以期对致病微生物的生物学特性、诊断策略和治疗方法等有突破性的认识.作为对人类健康一直存在严重威胁的结核分枝杆菌,其基因组在进化中所发生的各种遗传事件对其生物学性质、致病能力和抗药性等各方面有重要作用.本文旨在阐述结核分枝杆菌的起源及其基因组特征,论述其基因组进化的研究进展.  相似文献   

5.
张玉娇  李晓静  米凯霞 《遗传》2016,38(10):918-927
结核病是由结核分枝杆菌(Mycobacterium tuberculosis)通过空气传播引起人类感染的慢性传染病,耐药结核分枝杆菌的流行是目前结核病防治的世界难题。氟喹诺酮类药物是人工合成药物,应用于耐药结核的临床治疗中,在治疗中起着核心的作用。但近年来,氟喹诺酮类药物的抗性菌株不断出现,愈发增加了结核病治疗的困难与治疗失败风险。在临床中氟喹诺酮药物的靶点比较清楚,是结核分枝杆菌的DNA旋转酶。目前发现结核分枝杆菌耐氟喹诺酮类药物的机制主要包括药物靶点DNA旋转酶的关键氨基酸改变、药物外排泵系统、细菌细胞壁厚度的增加以及喹诺酮抗性蛋白MfpA介导的DNA旋转酶活性调控。其中在氟喹诺酮靶标DNA旋转酶功能活性改变的耐药机制方面,编码DNA旋转酶基因突变一直是研究的热点,但近年来发现DNA旋转酶的调控蛋白MfpA以及DNA旋转酶的修饰在细菌耐药性中起着重要的作用,相关机制还亟待发现。本文综述了当前结核分枝杆菌耐氟喹诺酮类药物的作用机制,旨在为研发精准诊断技术和药物发掘提供科学理论基础和参考。  相似文献   

6.
Multidrug resistant (MDR) tuberculosis is caused by Mycobacterium tuberculosis resistant to isoniazid and rifampicin, the two most effective drugs used in tuberculosis therapy. Here, we investigated the mechanism by which resistance towards isoniazid develops and how overexpression of efflux pumps favors accumulation of mutations in isoniazid targets, thus establishing a MDR phenotype. The study was based on the in vitro induction of an isoniazid resistant phenotype by prolonged serial exposure of M. tuberculosis strains to the critical concentration of isoniazid employed for determination of drug susceptibility testing in clinical isolates. Results show that susceptible and rifampicin monoresistant strains exposed to this concentration become resistant to isoniazid after three weeks; and that resistance observed for the majority of these strains could be reduced by means of efflux pumps inhibitors. RT-qPCR assessment of efflux pump genes expression showed overexpression of all tested genes. Enhanced real-time efflux of ethidium bromide, a common efflux pump substrate, was also observed, showing a clear relation between overexpression of the genes and increased efflux pump function. Further exposure to isoniazid resulted in the selection and stabilization of spontaneous mutations and deletions in the katG gene along with sustained increased efflux activity. Together, results demonstrate the relevance of efflux pumps as one of the factors of isoniazid resistance in M. tuberculosis. These results support the hypothesis that activity of efflux pumps allows the maintenance of an isoniazid resistant population in a sub-optimally treated patient from which isoniazid genetically resistant mutants emerge. Therefore, the use of inhibitors of efflux should be considered in the development of new therapeutic strategies for preventing the emergence of MDR-TB during treatment.  相似文献   

7.
Mycobacterium tuberculosis, the causative agent of most human tuberculosis, infects one third of the world's population and kills an estimated 1.7 million people a year. With the world-wide emergence of drug resistance, and the finding of more functional genetic diversity than previously expected, there is a renewed interest in understanding the forces driving genome evolution of this important pathogen. Genetic diversity in M. tuberculosis is dominated by single nucleotide polymorphisms and small scale gene deletion, with little or no evidence for large scale genome rearrangements seen in other bacteria. Recently, a single report described a large scale genome duplication that was suggested to be specific to the Beijing lineage. We report here multiple independent large-scale duplications of the same genomic region of M. tuberculosis detected through whole-genome sequencing. The duplications occur in strains belonging to both M. tuberculosis lineage 2 and 4, and are thus not limited to Beijing strains. The duplications occur in both drug-resistant and drug susceptible strains. The duplicated regions also have substantially different boundaries in different strains, indicating different originating duplication events. We further identify a smaller segmental duplication of a different genomic region of a lab strain of H37Rv. The presence of multiple independent duplications of the same genomic region suggests either instability in this region, a selective advantage conferred by the duplication, or both. The identified duplications suggest that large-scale gene duplication may be more common in M. tuberculosis than previously considered.  相似文献   

8.
This minireview presents recent developments in molecular methods for the diagnosis of tuberculosis, including detection, identification and determination of drug resistance of Mycobacterium tuberculosis . Tuberculosis remains one of the major causes of global death from a single infectious agent. This situation is worsened by the HIV/AIDS pandemic because one-third of HIV/AIDS patients are coinfected with M. tuberculosis . Also of great concern is the emergence of drug-resistant tuberculosis because there are almost no treatment options available for patients affected by highly resistant strains of M. tuberculosis . Advances in molecular biology techniques and a better knowledge of the molecular mechanisms of drug resistance have provided new tools for the rapid diagnosis of tuberculosis. Several nucleic acid amplification technologies have been developed and evaluated. New molecular approaches are being introduced continuously. This minireview will also comment on the future perspectives for the molecular diagnosis of tuberculosis and the feasibility for the implementation of these newer techniques in the clinical diagnostic laboratory.  相似文献   

9.
Victor TC  van Helden PD  Warren R 《IUBMB life》2002,53(4-5):231-237
Management of Tuberculosis is complicated by the emergence of drug resistant strains of Mycobacterium tuberculosis and this poses a threat to the success of Tuberculosis control programmes. Drug susceptibility testing by culture is time-consuming and technically difficult. It is known that resistance to drugs is due to a number of genomic mutations in specific genes of M. tuberculosis. These mutations in combination with molecular techniques can be used as markers for drug resistance, since drug susceptible isolates lack the corresponding gene mutations. This review focuses on molecular mechanisms, methods and applications as a possible new diagnostic tool for the early molecular detection of drug resistance in M. tuberculosis.  相似文献   

10.
New strategies to control infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, are urgently required, particularly in areas where acquired immunodeficiencies are prevalent. In this report we have determined if modification of the current tuberculosis vaccine, Mycobacterium bovis BCG, to constitutively express the mycobacterial HspX latency antigen altered its protective effect against challenge with virulent M. tuberculosis. Overexpression of M. tuberculosis HspX in BCG caused reduced growth in aerated cultures compared to control BCG, but growth under limited oxygen availability was not markedly altered. Upon infection of mice, BCG:HspX displayed tissue-specific attenuation compared to control BCG, with reduced growth within the lung and liver but not the spleen. Both BCG:HspX and control BCG protected mice against aerosol M. tuberculosis challenge to a similar extent, however, immunodeficient mice infected with BCG:HspX survived significantly longer than mice infected with the control BCG strain. Therefore, altering the in vivo persistence of BCG by overexpression of HspX may be one important step towards developing a new tuberculosis vaccine with an improved safety profile and suitable protective efficacy against M. tuberculosis infection.  相似文献   

11.
Genes required for mycobacterial growth defined by high density mutagenesis   总被引:31,自引:0,他引:31  
Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.  相似文献   

12.
结核病耐药率的攀升是目前全球结核病防控面临的重大挑战。结核分枝杆菌主要通过其基因组中耐药相关基因发生点突变而获得耐药性。由于耐药相关基因通常具有重要的生理功能,其突变往往会导致结核分枝杆菌自身适应性下降,即产生“适应性代价”。然而,耐药结核分枝杆菌可通过进一步积累其他特定突变来回复其适应性,这种能使其适应性上升的突变称为“补偿性突变”。耐药结核分枝杆菌的补偿性进化被认为是耐药结核病广泛传播与流行的生物学基础。近年来,在结核病分子流行病学和基础研究领域,针对耐药结核分枝杆菌的补偿性进化开展了大量研究。本文从结核分枝杆菌的耐药分子机制、耐药突变的适应性代价与补偿性进化,以及补偿性进化如何影响耐药结核病传播等方面,综述耐药结核分枝杆菌补偿性进化的研究进展。  相似文献   

13.
The intrinsic resistance of Mycobacterium tuberculosis and related pathogens to most common antibiotics limits chemotherapeutic options to treat tuberculosis and other mycobacterial diseases. Resistance has traditionally been attributed to the unusual multi-layer cell envelope that functions as an effective barrier to the penetration of antibiotics. Recent insights into mechanisms that neutralize the toxicity of antibiotics in the cytoplasm have revealed systems that function in synergy with the permeability barrier to provide intrinsic resistance. Here, we highlight the growing pool of information about internal, antibiotic-responsive regulatory proteins and corresponding resistance genes, and present new concepts that rationalize how they might have evolved. Pharmaceutical inhibition of these intrinsic systems could make many previously available antibiotics active against M. tuberculosis.  相似文献   

14.
15.
Drug efflux pumps (EP) like Mmr in Mycobacterium transported drugs out of cell, a main reason for drug resistance developing in Mycobacterium tuberculosis. In this in silico study, mainly analysed EP inhibitory potential of a plant-derived flavonoid, quercetin, through docking analysis. Mmr present in Mycobacterium smegmatis and M. tuberculosis, and its homologue EmrE of Escherichia coli was used. Initially, homology modelling of EP monomers and dimers constructed from M. smegmatis, M. tuberculosis and E. coli; the stabilities of models were analysed from Ramachandran plots prepared in PROCHECK. Docking analysis of quercetin with EP protein showed that in all three organisms, the residues for function and stability are important and quercetin had best interactions comparing to compounds such as, verapamil, reserpine, chlorpromazine, Carbonyl Cyanide m- Chloro Phenylhydrazone. Molecular dynamics and simulation studies showed that during the entire course of simulation quercetin-Mmr complex were stable. It insights quercetin can act as a non-antibiotic adjuvant for treatment of tuberculosis by bring down the efflux of drug from bacteria.  相似文献   

16.
Resistance to antibiotics is increasingly commonplace amongst important human pathogens. Although the mechanism(s) of resistance vary from agent to agent they typically involve one or more of: alteration of the drug target in the bacterial cell, enzymatic modification or destruction of the drug itself, or limitation of drug accumulation as a result of drug exclusion or active drug efflux. While most of these are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide resistance to a broad range of structurally unrelated antimicrobials--so-called multidrug efflux systems. Resistance to biocides is less common and likely reflects the multiplicity of targets within the cell as well as the general lack of known detoxifying enzymes. Resistance typically results from cellular changes that impact on biocide accumulation, including cell envelope changes that limit uptake, or expression of efflux mechanisms. Still, target site mutations leading to biocide resistance, though rare, are known. Intriguingly, many multidrug efflux systems also accommodate biocides (e.g. triclosan) such that strains expressing these are both antibiotic- and biocide-resistant. Indeed, concern has been expressed regarding the potential for agents such as triclosan to select for strains resistant to multiple clinically-relevant antibiotics. Some of the better characterized examples of such multidrug efflux systems can be found in the opportunistic pathogen Pseudomonas aeruginosa where they play an important role in the noted intrinsic and acquired resistance of this organism to antibiotics and triclosan. These tripartite pumps include an integral inner membrane drug-proton antiporter, an outer membrane- and periplasm-spanning channel-forming protein and a periplasmic link protein that joins these two. Expression of efflux genes is governed minimally by the product of a linked regulatory gene that is in most cases the target for mutation in multidrug resistant strains hyperexpressing these efflux systems. Issues for consideration include the natural function of these efflux systems and the therapeutic potential of targeting these systems in combating acquired multidrug resistance.  相似文献   

17.
Treatment of tuberculosis, a complex granulomatous disease, requires long-term multidrug therapy to overcome tolerance, an epigenetic drug resistance that is widely attributed to nonreplicating bacterial subpopulations. Here, we deploy Mycobacterium marinum-infected zebrafish larvae for in vivo characterization of antitubercular drug activity and tolerance. We describe the existence of multidrug-tolerant organisms that arise within days of infection, are enriched in the replicating intracellular population, and are amplified and disseminated by the tuberculous granuloma. Bacterial efflux pumps that are required for intracellular growth mediate this macrophage-induced tolerance. This tolerant population also develops when Mycobacterium tuberculosis infects cultured macrophages, suggesting that it contributes to the burden of drug tolerance in human tuberculosis. Efflux pump inhibitors like verapamil reduce this tolerance. Thus, the addition of this currently approved drug or more specific efflux pump inhibitors to standard antitubercular therapy should shorten the duration of curative treatment.  相似文献   

18.
ClpS是原核生物蛋白质降解复合物ClpAPS的重要组成成分,它可以识别某些特定的氨基酸序列并将其呈递给ClpAP以促进其降解。同时,ClpS也抑制了其他蛋白质底物的降解。本研究通过在耻垢分枝杆菌中过度表达ClpS,发现所构建的重组菌株提高了利福平的抗药性。应用定量蛋白质组学技术,我们系统地分析了过度表达ClpS对于细菌蛋白质组的影响,并推测出细菌抗利福平的分子机制:ClpS促进稳态的调整、促进药物沉降以及加速药物代谢。本研究首次通过改变细菌降解复合物的相关蛋白的表达增加细菌的抗药性,并证明蛋白质组学技术是细菌的抗药性研究以及耐药株筛选的重要工具。  相似文献   

19.
林楠  周杰  周盈  汪世华 《微生物学通报》2014,41(5):1011-1019
【目的】结合现有数据,通过对两株临床超级广泛耐药的结核分枝杆菌全基因组的测序和分析,发现其型别相关的突变位点,解释发生广泛耐药的基因组突变机制。【方法】利用Solexa第二代测序技术对两株广泛耐药结核分枝杆菌(FJ05194和GuangZ0019)进行全基因组测序分析。以H37Rv为参考序列得到两株广泛耐药菌株的单核苷酸多态性(SNPs),构建系统发育树鉴定菌株型别,判断突变位点中型别相关和非型别相关的SNPs。定位SNPs所在的基因组区域,对型别相关的突变基因进行KEGG通路的富集分析,对非型别相关的突变基因和间隔区判断是否与耐药相关。【结果】两株广泛耐药菌株分别属于Lineage2和Lineage4型别,两菌株在碱基替换方面存在差异性,Lineage2型别相关的基因功能富集于ABC转运蛋白和核苷酸切除修复的通路。耐药方面,发现了已知的耐药相关基因的突变(rpoB、katG、rpsl、gyrA、gyrB、embB和ethA等),但卷曲霉素和卡那霉素相关的rrs、tlyA和eis启动子区域未发生突变,不足以解释其耐药性的产生。与最新报道的候选耐药基因比较,发现了卷曲霉素和卡那霉素相关的突变(Rv1393c、Rv0265c和narX等)和外排泵相关的pstB、Rv2333c和Rv2687c突变。【结论】结核分枝杆菌Lineage2型别相关的SNPs中含有影响结核分枝杆菌突变率和耐药性的突变。对于两株超级广泛耐药的结核菌,已知的激活药物或药靶相关的单耐药基因突变集合不能完全解释其广泛耐药性,还涉及新候选结核耐药基因、外排泵和补偿等其他潜在机制的相关基因突变。  相似文献   

20.
Resistance to isoniazid (INH), a frontline, antituberculosis drug, presents a major problem in the chemotherapy of tuberculosis. Although several targets of INH have been identified, the mechanism of INH resistance remains incompletely understood. This report demonstrates that INH accumulation in Mycobacterium smegmatis is enhanced both upon addition of both a proton motive force (pmf) uncoupler, carbonylcyanide m-chlorophenylhydrazone (CCCP), and upon addition of ortho-vanadate, an inhibitor of ATP-dependent efflux pumps. Both the Deltapsi and DeltapH components of the pmf are likely to be involved as judged by the effects of valinomycin and nigericin, respectively. Reserpine, an inhibitor of the human MDR1 P-glycoprotein, enhances INH accumulation in a manner similar to o-vanadate. Verapamil, a calcium channel blocker, also enhances INH uptake. Taken together, the results provide evidence of the involvement of both pmf- and ATP-dependent extrusion systems in INH efflux in M. smegmatis, making it important to evaluate the role of such systems in INH resistance in pathogenic mycobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号